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Abstract

Canonical Correlation Analysis (CCA) is a classical tech-
nique for two-view correlation analysis, while Probabilistic
CCA (PCCA) provides a generative and more general view-
point for this task. Recently, PCCA has been extended to bi-
linear cases for dealing with two-view matrices in order to
preserve and exploit the matrix structures in PCCA. How-
ever, existing bilinear PCCAs impose restrictive model as-
sumptions for matrix structure preservation, sacrificing gen-
erative correctness or model flexibility. To overcome these
drawbacks, we propose BPCCA, a new bilinear extension of
PCCA, by introducing a hybrid joint model. Our new model
preserves matrix structures indirectly via hybrid vector-based
and matrix-based concatenations. This enables BPCCA to
gain more model flexibility in capturing two-view correla-
tions and obtain close-form solutions in parameter estimation.
Experimental results on two real-world applications demon-
strate the superior performance of BPCCA over competing
methods.

Introduction

Today’s data are commonly collected from diverse sources
or views that could represent different properties of the same
object. For example, face images can be captured in differ-
ent poses or illumination conditions, and webpage contents
often include text, images, and hyperlinks. Canonical corre-
lation analysis (CCA) (Hotelling 1936) is a classical method
to learn the (linear) relationships between two sets of vari-
ables, i.e., data from two views. It seeks two transformations,
one for each view, to project data into a common subspace
in which the two views are maximally correlated. CCA has
wide applications including information retrieval (Hardoon,
Szedmak, and Shawe-Taylor 2004), multi-view clustering
(Chaudhuri et al. 2009), and multi-label learning (Zhang and
Schneider 2011).

CCA can also be viewed from a probabilistic perspec-
tive. Bach and Jordan (2005) gave a probabilistic interpre-
tation of CCA, namely Probabilistic CCA (PCCA). Bene-
fiting from the probabilistic framework, PCCA can capture
data uncertainty, deal with missing values, and incorporate
priori knowledge. Specifically, PCCA relates two-view ob-
servations x(1) ∈ R

d1 and x(2) ∈ R
d2 to a common latent
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variable z ∈ R
q(1 � q � min(d1, d2)) as follows:

z ∼ N (0, I),x(v)|z ∼ N (W(v)z,Σ(v)), (1)

where we have assumed that data are centered with zero
means, v ∈ {1, 2} denotes the view, W(v) ∈ R

dv×q is the
factor loading matrix, and Σ(v) ∈ R

dv×dv is the covariance
matrix.

The key idea of PCCA is to construct a joint model to
capture the correlations of the two views. This is achieved
via vector-based concatenation as follows:[

x(1)

x(2)

]
|z ∼ N (

[
W(1)

W(2)

]
z,

[
Σ(1) 0
0 Σ(2)

]
), (2)

where x(1) and x(2) are concatenated as a joint observa-
tion generated by the common latent variable z. With the
same idea of two-view combination, several PCCA exten-
sions have been proposed, including Bayesian CCA (Klami,
Virtanen, and Kaski 2013) and nonlinear Bayesian CCA
(Damianou, Lawrence, and Ek 2016).

CCA and PCCA are designed for vector inputs, while
many real-world data are naturally in the form of tensors.
Recently, some multilinear extensions of CCA have been
proposed to learn correlations from tensors rather than vec-
tors (Lee and Choi 2007; Yan et al. 2012; Gang et al. 2011;
Lu 2013). These works show that exploiting the tensor struc-
tures in CCA could lead to compact subspace representation
and robustness against the small sample size problem (Lu,
Plataniotis, and Venetsanopoulos 2013).

In contrast, extending PCCA to its multilinear version is
more challenging and has not been well-studied yet. One
of the main challenges is how to construct a joint model
for two-view combination while preserving the tensor struc-
tures. Of course, two-view tensors can be reshaped into
vectors and then combined via vector-based concatenation.
However, the resultant joint variable is a vector rather than a
tensor whose structures have been lost in this way.

To preserve tensor structures in two-view combina-
tion, several bilinear PCCAs have been proposed. Two-
dimensional Probabilistic CCA (2DPCCA) (Afrabandpey,
Safayani, and Mirzaei 2014) takes partially projected (ma-
trix) observations rather than the original ones as inputs,
so that two views can be combined via matrix-based con-
catenation with preserved matrix (2D tensor) structures.
However, this modification violates the generative nature of
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PCCA and fails to fully exploit the information from both
views. Bayesian Multi-View Tensor Factorization (BMTF)
(Khan and Kaski 2014) assumes that two-view matrix ob-
servations are generated by the same row (or column) fac-
tors so that they can be naturally combined in a bilinear
model (via matrix-based concatenation) without vectoriza-
tion. However, such restrictive assumption greatly limits the
model flexibility and makes BMTF suitable only for two-
view matrices with the same row (or column) dimensions.

In this paper, we propose a new bilinear PCCA named
as Bilinear Probabilistic Canonical Correlation Analysis
(BPCCA), which achieves both two-view combination and
matrix structure preservation without violating the genera-
tive nature of PCCA or imposing restrictive model assump-
tions. Unlike existing works that seek only matrix-based
concatenation of observations for direct structure preserva-
tion, we build BPCCA based on a hybrid joint model with
intermediate matrices, where observations are combined via
vector-based concatenation for more model flexibility while
the intermediate matrices are combined via matrix-based
concatenation for preserving matrix structures indirectly.
Moreover, the hybrid model decouples the column and row
structures from two-view matrices, which enables parameter
estimation with close-form solutions.

Preliminaries and Related Works

Notations: Vectors and matrices are denoted by bold low-
ercase (x) and uppercase (X) letters, respectively. Sym-
bol ⊗ denotes the Kronecker product. tr(·) is the ma-
trix trace, vec(·) is the vectorization operator that stacks
the columns of a matrix into a single column vec-
tor, diag(·) constructs a diagonal matrix from a vector,
and blkdiag(·, ·) constructs a block diagonal matrix from
two matrices. Ndc,dr

(Ξ,Σc,Σr) denotes a matrix-variate
Gaussian distribution with the mean matrix Ξ, and the co-
variance matrices Σc ∈ R

dc×dc and Σr ∈ R
dr×dr . If

X ∼ Ndc,dr
(Ξ,Σc,Σr), then vec(X) ∼ N (vec(Ξ),Σr ⊗

Σc) (Gupta and Nagar 1999).
Given two-view observed matrices X(1) ∈ R

dc
1×dr

1 and
X(2) ∈ R

dc
2×dr

2 , our goal is to estimate a latent matrix Z ∈
R

qc×qr (1 � qc � min(dc1, d
c
2), 1 � qr � min(dr1, d

r
2))

shared by the two views. It is common to relate the matrix
observations of each view to the latent matrix via bilinear
projections as follows (Xie et al. 2008; Yu, Bi, and Ye 2011):

X(v) = C(v)ZR(v)� +E(v), (3)

where v ∈ {1, 2}, C(v) ∈ R
dc
v×qc and R(v) ∈ R

dr
v×qr are

the column and row factor matrices, respectively, and E(v)

is the noise matrix. For simplicity, we assume that data from
the two views are centered with zero means.

Remarks: To estimate the common latent matrix Z, we
need to first combine the two views in a joint model.
This can be easily done by vector-based concatenation,
i.e., vectorizing both sides of (3) and concatenating the
corresponding variables as (2), where x(v) = vec(X(v)),
W(v) = R(v) ⊗ C(v), and z = vec(Z) due to the fact
that vec(C(v)ZR(v)�) = (R(v) ⊗ C(v))vec(Z). However,

such vector-based concatenation breaks the matrix structure
of X(v), losing potentially useful structural information.

To address the above problem, 2DPCCA (Afrabandpey,
Safayani, and Mirzaei 2014) takes partially projected ob-
servations T(v,c) = X(v)R(v) ∈ R

dc
v×qr and T(v,r) =

X(v)�C(v) ∈ R
dr
v×qc as inputs to avoid directly concate-

nating X(1) and X(2). This enables matrix-based concate-
nation of T(1,c) and T(2,c) as follows (a similar formulation
hold for T(v,r) with R(v)):[

T(1,c)

T(2,c)

]
=

[
C(1)

C(2)

]
Z+Ec, (4)

where the joint observation maintains the column structures
of the two-view observed matrices, and Ec is the column
noise matrix. However, this model violates the generative
nature of PCCA, since the true observations X(v) can not
be reconstructed from the latent matrix Z any more. In ad-
dition, the partial projections T(v,c) and T(v,r) only depend
on X(v), and fail to take the information from the other view
into account.

Another recent method BMTF (Khan and Kaski 2014) as-
sumes that two views share the same row (or column, equiv-
alently) factor matrix R̃ = R(1) = R(2), so that X(1) and
X(2) are naturally combined in the following bilinear model
via matrix-based concatenation:[

X(1)

X(2)

]
=

[
C(1)

C(2)

]
diag(z)R̃� +

[
E(1)

E(2)

]
. (5)

However, such restrictive assumption greatly limits the
model flexibility and the applicability of BMTF. Since
R(1) = R(2), BMTF can only deal with two-view matrices
with the same row (or column) dimensions.

Bilinear Probabilistic CCA

Both 2DPCCA and BMTF aim to preserve the matrix struc-
tures directly in the joint observation by avoiding vector-
based concatenation as well as the subsequent vectorization.
However, they achieve this at the expense of the generative
nature or model flexibility. In this paper, we propose Bilinear
Probabilistic CCA (BPCCA) with a hybrid joint model that
allows both vector-based concatenation of observations to
get rid of unnecessary model assumptions and matrix-based
concatenation of intermediate matrices to preserve the ma-
trix structures indirectly.

We present BPCCA in detail below. Firstly, we adapt a
modified bilinear model for individual views, and then show
how to combine the two views in a hybrid joint model with
preserved matrix structures. Finally, we develop an EM-type
algorithm for parameter estimation with close-form solu-
tions.

Bilinear model for individual views: We characterize in-
dividual views with a modified bilinear model (Zhao, Yu,
and Kwok 2012):⎧⎪⎨
⎪⎩

X(v) = C(v)ZR(v)� + F
(v)
c + F

(v)
r +E(v),

E
(v)
c ∼ Ndc

v,q
r (0,Σ

(v)
c , I),E

(v)
r ∼ Nqc,dr

v
(0, I,Σ

(v)
r ),

E(v) ∼ Ndc
v,d

r
v
(0,Σ

(v)
c ,Σ

(v)
r ),Z ∼ Nqc,qr (0, I, I),
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where F
(v)
c = C(v)E

(v)
r , F(v)

r = E
(v)
c R(v)�, and E

(v)
c ,

E
(v)
r , and E are column, row, and common noise matrices,

respectively. Σ(v)
c and Σ

(v)
r are the column and row covari-

ance matrices, respectively.
Originally, this model was proposed as a bilinear exten-

sion of Probabilistic PCA to learn subspaces for only one
view. Here, we make use of it to model individual views in
CCA. Compared with (3), two extra noise terms C(v)E

(v)
r

and E
(v)
c R(v)� are included. This improves the flexibility

in capturing data uncertainty, and makes the marginal dis-
tribution p(X(v)) to be matrix-variable Gaussian, which is
natural to model matrices.

The above model can also be rewritten as follows by de-
composing the bilinear projection into two stages (Zhao, Yu,
and Kwok 2012):⎧⎪⎨

⎪⎩
X(v) = Y(v,c)R(v)� + F(v,c),

Y(v,c) = C(v)Z+E
(v)
c ,

F(v,c) = C(v)E
(v)
r +E(v),

(6)

where Y(v,c) ∈ R
dc
v×qr is the column-projected interme-

diate matrix, and F(v,c) ∈ R
dc
v×dr

v is the column-projected
noise (residual) matrix. The conceptual meaning of this two-
stage representation is that the latent matrix Z is first par-
tially projected in the column direction onto Y(v,c), and then
Y(v,c) is projected in the row direction to finally generate
X(v). Similarly, we can also decompose the bilinear projec-
tion by first projecting row and then column directions:⎧⎪⎨

⎪⎩
X(v) = C(v)Y(v,r) + F(v,r),

Y(v,r) = ZR(v)� +E
(v)
r ,

F(v,r) = E
(v)
c R�

x +E(v),

(7)

where Y(v,r) ∈ R
qc×dr

v and F(v,r) ∈ R
dc
v×dr

v .
The three models above have the same marginal dis-

tribution X(v) ∼ Ndc
v,d

r
v
(0,Ψ

(v)
c ,Ψ

(v)
r ), where Ψ

(v)
c =

C(v)C(v)� +Σ
(v)
c , and Ψ

(v)
r = R(v)R(v)� +Σ

(v)
r . There-

fore, they are equivalent.
With the above results, we tackle the problem of two-view

combination with preserved matrix structures. Specifically,
we combine the two views with preserved column and row
structures based on (6) and (7), respectively. For compact
presentation, we will provide detailed derivation only for
combining the column-wise model (6), while the row-wise
model (7) can be combined similarly.

Observed vector combination: We first combine the
two-view observations. The conditional distribution of
X(v) given Y(v,c) for individual views is X(v)|Y(v,c) ∼
Ndc

v,d
r
v
(Y(v,c)R(v)�,Ψ(v)

c ,Σ
(v)
r ). It can be rewritten in a

vector form: x(v,c)|y(v,c) ∼ N (R̂(v)y(v,c),Ψ
(v)
c ⊗ Σ

(v)
r ),

where x(v,c) = vec(X(v)�), y(v,c) = vec(Y(v,c)�), and
R̂(v) = I⊗R(v). Since X(1) and X(2) are independent
given Y(1,c) and Y(2,c), the two-view observations X(1) and
X(2) can be combined via vector-based concatenation as fol-
lows:

xc|yc ∼ N (R̂yc,Lc), (8)

where xc = [x(1,c)�,x(2,c)�]�, yc = [y(1,c)�,y(2,c)�]�,
R̂ = blkdiag(R̂(1), R̂(2)), and Lc = blkdiag(Ψ(1)

c ⊗
Σ

(1)
r ,Ψ

(2)
c ⊗ Σ

(2)
r ). Compared with 2DPCCA and BMTF,

we allow vector-based concatenation and do not require the
joint observation xc to be a matrix. As a result, the hybrid
joint model is more flexible, since there is no need to impose
additional assumptions on the observations.

Intermediate matrix combination: Although the matrix
structures are not directly preserved in the joint observation
xc above, we can still preserve them indirectly in the in-
termediate matrices. Based on (6), the two-view intermedi-
ate matrices Y(1,c) and Y(2,c) can be directly combined via
matrix-based concatenation as follows:

Yc|Z ∼ Ndc
1+dc

2,q
r (CZ,Σc, I), (9)

where Yc = [Y(1,c)�,Y(2,c)�]�, C = [C(1)�,C(2)�]�,
and Σc = blkdiag(Σ(1)

c ,Σ
(2)
c ). Here, Yc is generated by

the joint factor matrix C, and thus maintains the column
structures of the two views. In other words, we preserve the
matrix structures indirectly via the intermediate matrices.

With the above results, we can easily obtain other distri-
butions involved in Yc as follows:

Yc ∼ Ndc
1+dc

2,q
r (0,Ψc, I), (10)

Z|Yc ∼ Nqc,qr (McC
�Σ−1

c Yc,Mc, I), (11)

where Ψc = CC�+Σc, and Mc = (C�Σ−1
c C+I)−1. Us-

ing the matrix-variate Gaussian property, it is easy to obtain
the following distributions for yc:

yc ∼ N (0,Ψc ⊗ I), (12)

yc|xc ∼ N (ΠcR̂
�L−1

c xc,Πc), (13)

where Πc = (Ψ−1
c ⊗ I+ R̂�L−1

c R̂)−1.
Remarks: The intermediate matrix Y(v,c) can be viewed

as a partial projection, which serves similar roles as
T(v,c) for matrix-based concatenation in 2DPCCA. How-
ever, 2DPCCA fails to relate T(v,c) to X(v) in a proba-
bilistic model, and thus breaks the generation path from
the latent matrix Z to the observation X(v). Moreover,
T(v,c) = X(v)R(v) depends only on one view, while Y(1,c)

and Y(2,c) jointly connect with both views (the joint obser-
vation xc) in p(yc|xc) (13), and can be estimated more ac-
curately.

Column-wise parameter estimation: The introduced
hybrid joint model facilitates not only two-view combi-
nation but also parameter estimation. Provided a data set
{X(1)

n ,X
(2)
n }Nn=1 with N examples, our aim is to esti-

mate BPCCA parameters θc = {C,Σ
(1)
c ,Σ

(2)
c } and θr =

{R,Σ
(1)
r ,Σ

(2)
r }. Unfortunately, it is difficult to solve θc

and θr by maximizing the complete-data log-likelihood
L(θc,θr) =

∑N
n=1 ln p(x

c
n|yc

n,θc,θr)p(Y
c
n,Zn|θc) =∑N

n=1 ln p(x
r
n|yr

n,θc,θr)p(Y
r
n,Zn|θr), since θc and θr

are coupled in p(xc|yc) and p(xr|yr).
To address this problem, we first consider to estimate θc

based on the column-wise two-stage model (6). If the in-
termediate matrices {Yc

n}Nn=1 are observed, we can easily
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solve for θc via the EM algorithm by maximizing Lc(θc) =∑N
n=1 ln p(Y

c
n,Zn|θc) =

∑N
n=1 ln p(Y

c
n|Zn,θc)p(Zn)

instead of the original log-likelihood L(θc,θr). This mo-
tivates us to obtain the statistics of {Yc

n}Nn=1 via their maxi-
mum posteriori estimations according to p(yc|xc) (13), and
maximize the expectation of Lc(θc) w.r.t. p(yc|xc) instead
of the complicated L(θc,θr) for close-form solutions.

In the E step, we take the expectation of Lc(θc) w.r.t.
p(Z,Yc|xc) = p(Z|Yc)p(yc|xc) and obtain

Qc(θc) = −1

2

N∑
n=1

{
qr ln |Σc|+ tr(〈Σ−1

c (Yc
nY

c
n
�

+CZnZ
�
nC

� −Yc
nZ

�
nC

� −CZnY
c
n
�)〉c)

}
,

(14)

where terms of p(Zn) have been omitted as a constant, and
〈·〉c denotes the expectation E[E[·|Yc]|xc] w.r.t. p(Z|Yc)
and p(yc|xc) correspondingly.

Define an operator trq(A) that generates an m × n ma-
trix from an mq × nq block matrix A with q × q subma-
trices, where each element trq(A)ij is the trace of the cor-
responding block Aij . With simple substitutions, we have
E[Yc

nY
c
n
�|xc

n] of size (dc1 + dc2) × (dc1 + dc2) as the only
statistic required for (14) as follows:

E[Yc
nY

c
n
�|xc

n] = trqr (E[yc
ny

c
n
�|xc

n]), (15)

where E[yc
ny

c
n
�|xc

n] = ΠcR̂
�L−1

c xc
nx

c
n
�L−�

c R̂Πc +Πc

from (13) is just a (dc1 + dc2)q
r × (dc1 + dc2)q

r block matrix
with qr × qr submatrices (the covariance of the i-th and j-th
rows of Yc

n given xc
n).

In the M step, we maximize Qc(θc) w.r.t. θc and obtain:

C̃ =

[
N∑

n=1

〈Yc
nZ

�
n 〉c

][
N∑

n=1

〈ZnZn
�〉c

]−1

, (16)

Σ̃(v)
c =

1

Nqr

N∑
n=1

〈H(v,c)
n H(v,c)

n

�〉c, (17)

where 〈Yc
nZ

�
n 〉c = E[Yc

nY
c
n
�|xc

n]Σ
−1
c CMc, 〈ZnZ

�
n 〉c =

qrMc +McC
�Σ−1

c 〈Yc
nZ

�
n 〉c, and H

(v,c)
n = Y

(v,c)
n −

C(v)Zn.
Row-wise parameter estimation: With the hybrid con-

catenations in (8) and (9), we can combine the row-wise
model (7) and estimate the parameter θr similarly. De-
fine x(v,r) = vec(X(v)), y(v,r) = vec(Y(v,r)), xr =

[x(1,r)�,x(2,r)�]�, yr = [y(1,r)�,y(2,r)�]�, and Yr =
[Y(1,r),Y(2,r)]�. After obtaining the posterior distribu-
tion p(yr|xr) like (13), θr can be solved by maximizing
the expectation of Lr(θr) =

∑N
n=1 ln p(Y

r
n,Zn|θr) w.r.t.

p(yr|xr) via the EM algorithm (see the supplementary ma-
terial1 for more details).

In the E step, we take the expectation of Lr(θr) w.r.t.
p(Z,Yr|xr) = p(Z|Yr)p(yr|xr) and compute the follow-
ing expectation:

E[Yr
nY

r
n
�|xr

n] = trqc(E[yr
ny

r
n
�|xr

n]), (18)
1Available at https://drive.google.com/open?id=0B6F5rwPNzS

mOZWM5M2FBWUp3OUk.

Algorithm 1 Bilinear Probabilistic CCA

1: Input: Data set {X(1)
n ,X

(2)
n }Nn=1, regularization parameter γ,

and initialized C(v),R(v),Σ
(v)
c ,Σ

(v)
r , v ∈ {1, 2}.

2: Center the data and compute the regularized sample covari-
ance.

3: repeat
4: Compute the expectation E[Yc

nY
c
n
�|xc

n] via (15).
5: Update C and Σ

(v)
c via (16) and (17), respectively.

6: Compute the expectation E[Yr
nY

r
n
�|xr

n] via (18).
7: Update R and Σ

(v)
r via (19) and (20), respectively.

8: until convergence.
9: Output: C(v),R(v),Σ

(v)
c ,Σ

(v)
r , v ∈ {1, 2}.

where E[yr
ny

r
n
�|xr

n] is a (dr1 + dr2)q
c × (dr1 + dr2)q

c block
matrix with qc × qc submatrices and can be computed from
p(yr|xr). Let 〈·〉r denote the expectation E[E[·|Yr]|xr]
w.r.t. p(Z|Yr) and p(yr|xr) correspondingly. In the M step,
we maximize Qr(θr) =

∑N
n=1 ln〈p(Yr

n,Zn|θr)〉r w.r.t.
θr, which leads to the following solutions:

R̃ =

[
N∑

n=1

〈Yr
nZn〉r

][
N∑

n=1

〈Zn
�Zn〉r

]−1

, (19)

Σ̃(v)
r =

1

Nqc

N∑
n=1

〈H(v,r)
n H(v,r)

n

�〉r. (20)

where 〈Yr
nZn〉r = E[Yr

nY
r
n
�|xr

n]Σ
−1
r RMr, 〈Z�

nZn〉r =

MrR
�Σ−1

r 〈Yr
nZ

�
n 〉r + qcMr, and H

(v,r)
n = Y

(v,r)
n −

R(v)Z�
n .

The BPCCA algorithm: By alternatively updating θc
and θr, we obtain the BPCCA algorithm. While a theoret-
ical convergence guarantee is not yet available, we perform
some empirical convergence studies and find that BPCCA is
stable and has relatively fast convergence. Algorithm 1 gives
the pseudocode of BPCCA.

Covariance regularization: For better generalization, it
is common to regularize the sample covariance in CCA,
which is also known as regularized CCA (Vinod 1976; Leur-
gans, Moyeed, and Silverman 1993). We incorporate such
regularization into BPCCA as well. Notice that the sufficient
statistics

∑N
n=1 E[Y

c
nY

c
n
�|xc

n] and
∑N

n=1 E[Y
r
nY

r
n
�|xr

n]
are determined by the sample covariance matrices Sc =
1
N

∑N
n=1 x

c
nx

c
n
� and Sr = 1

N

∑N
n=1 x

r
nx

r
n
�, respectively.

In practice, Sc and Sc could be ill-conditioned, leading to
unstable results. To solve this problem, we replace Sc and
Sr with S̃c = Sc + γI and S̃r = Sr + γI, respectively,
where γ is a regularization parameter.

Initialization and prediction: We initialize the BPCCA
parameters C(v), R(v), Σ(v)

c , Σ(v)
r to identity matrices with

proper sizes. After solving θc and θr, we can project an ob-
servation X(v) into the common subspace as follows:

E[Z|X(v)] = M(v)
c C(v)�Σ(v)

c

−1
X(v)Σ(v)

r

−1
R(v)M(v)

r ,

where M
(v)
c = (C(v)�Σ(v)

c

−1
C(v) + I)−1, and M

(v)
r =

(R(v)�Σ(v)
r

−1
R(v) + I)−1.
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Time and space complexity: BPCCA has comparable
time and space complexity as that of EM-based PCCA (Bach
and Jordan 2005), which is dominated by the computa-
tions in (15) and (18). The straightforward implementation
of BPCCA needs O(Nd4) and O(d4) for computing and
storing the covariance matrix, respectively, O(KNd4) for
matrix multiplication, and O(K(dq)3) for matrix inverse,
where K is the number of iterations, and we have assumed
that dc1 = dc2 = dr1 = dr2 = d, and qc = qr = q for simplic-
ity. Such time complexity could be further reduced by using
the properties of matrix structures and Kronecker product.

Discussion on multi-view BPCCA: Although BPCCA
is designed only for dealing with two views, the proposed
hybrid concatenation strategy can be readily used to com-
bine multi-view matrices for correlation learning. However,
to develop a practical multi-view extension of BPCCA, we
need to capture both common and view-specific components
from multiple views. This could be achieved by extending
inter-battery factor analysis (Browne 1979) to bilinear cases.

Experiments
This section evaluates BPCCA on two real-world applica-
tions: facial image matching and face photo-sketch recogni-
tion.

Algorithms and their settings: BPCCA is compared
against linear baselines: CCA, PCCA (Bach and Jordan
2005); bilinear CCAs: MCCA1+2 (Lu 2013), 2DCCA (Lee
and Choi 2007); and bilinear PCCA: BMTF (Khan and
Kaski 2014). Originally BMTF (Khan and Kaski 2014) is
a Bayesian nonparametric method for tensor factorization
rather than canonical correlation analysis, and is solved by
time consuming sampling techniques. For simplicity and
fair comparison, we implemented a non-Bayesian BMTF by
estimating the parameters of (5) via a generalized EM al-
gorithm (Meng and Rubin 1993). As found in preliminary
studies, the original BMTF is too slow to extract hundreds
of features and achieves much worse performance than its
non-Bayesian version. We also implemented 2DPCCA, and
found it numerical unstable with poor results, which is likely
due to its broken probabilistic framework.

For a × b matrices, we extract the maximum number of
features for CCA, 2DCCA, and MCCA1+2, i.e., ab, ab, and
min(a, b) features, respectively. For PCCA, BPCCA, and
BMTF, we set the number of extracted features to ab − 1,
(a−1)(b−1), and ab−1, respectively. The extracted features
are then sorted by the corresponding correlation coefficient ρ
in descending order, where ρs computed by both training and
test examples are tested. For CCA, 2DCCA, and MCCA1+2,
a heuristic scheme that further weights each extracted fea-
ture zi by the corresponding ρi is also tested (Weenink
2003), which usually leads to better results for these non-
probabilistic CCAs. We test 2DCCA and MCCA1+2 with
up to 10 iterations, after verifying that more iterations do not
result in statistically significant improvement in accuracy.
For probabilistic methods, we iterate PCCA and BPCCA un-
til the log-likelihood converges (a relative change is smaller
than 10−5), or up to 500 iterations.

The nearest neighbor classifier is used for matching,
where we test L1, L2, and cos metrics to measure the dis-

Table 1: Average rank-one matching accuracy on the PIE
data set (Best; Second best).

Pose 0◦ vs. 22.5◦ 0◦ vs. −22.5◦ 22.5◦ vs. −22.5◦

CCA 90.86 ± 4.04 91.28 ± 5.52 74.25 ± 6.02
2DCCA 82.22 ± 5.99 77.70 ± 9.52 59.52 ± 13.44

MCCA1+2 87.28 ± 6.37 88.04 ± 6.75 68.65 ± 8.12
PCCA 93.12 ± 3.75 90.93 ± 5.17 75.53 ± 8.81
BMTF 90.11 ± 3.41 90.70 ± 4.28 70.54 ± 5.06

BPCCA 94.50 ± 3.97 94.74 ± 3.48 80.58 ± 5.03

tances. Covariance matrix regularization as in BPCCA is
also applicable to all the competing methods. We employ
this strategy for all the methods and show their best re-
sults, where the regularization parameter is selected from
γ ∈ {0, 10−5, 10−4, . . . , 105}. We highlight the best and
comparable results in bold font based on t-test with a p-
value of 0.055 and underline the second best ones.

Matching facial images of different poses: A subset of
the PIE database (Sim, Baker, and Bsat 2003) is tested. Face
images in three poses (C27, C29, C05) corresponding to yaw
angle of 0◦, 22.5◦, −22.5◦ and 18 illumination conditions
(02∼06, 10∼22) are selected to form 3672 faces from 68
subjects. Due to missed faces, illuminations 07∼09 are ex-
cluded. Each image is cropped and normalized to 32 × 32
graylevel pixels.

In this study, face images of each pose are considered as
a view and treated as the probe set, while images from an-
other view serve as the gallery set. Our aim is to match the
probe and gallery images after projecting them into a com-
mon subspace, where a correct match means that the probe
and gallery are of both the same subject and illumination
condition. We show the matching performance on 3 paired
poses including 0◦ vs. 22.5◦, 0◦ vs. −22.5◦, and 22.5◦ vs.
−22.5◦, where the training and test sets are partitioned by
10-fold CV w.r.t. subjects. More results for 22.5◦ vs. 0◦,
−22.5◦ vs. 0◦, and −22.5◦ vs. 22.5◦ can be found in the
supplementary material.

As seen in Table 1, PCCA obtains the second best per-
formance, which indicates the advantages of probabilis-
tic CCAs. BPCCA consistently outperforms other methods
and achieves statistically significant improvements in most
cases. This shows the advantages of hybrid concatenations in
gaining more model flexibility and preserving matrix struc-
tures. On the other hand, BMTF is inferior to even baselines
CCA and PCCA, which can be attributed to its limited model
flexibility.

Face photo-sketch recognition: In this experiment, the
CUHK face-sketch database (CUFS) (Tang and Wang 2003)
is tested. It consists of the Chinese University of Hong
Kong (CUHK) student database (Tang and Wang 2003), the
AR databases (Martinez 1998), and the XM2VTS database
(Messer et al. 1999), including 188, 123, and 295 subjects,
respectively. Each subject has a photo in a frontal pose, nor-
mal illumination condition, and neutral expression with a
sketch drawn by an artist. Thus these face images naturally
come from two views, i.e. the photo and sketch, and we can
construct the probe and gallery sets, respectively. We study
both the photo vs. sketch and sketch vs. photo settings, while
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Table 2: Average rank-one matching accuracy on the CUFS data set (Best; Second best).
Matching Type Photo vs. Sketch Cropped Photo vs. Original Sketch with T = 50
Training Setting T = 25 T = 50 T = 75 m = 2 m = 4 m = 6 m = 8

C
U

H
K

CCA 38.59 ± 4.89 63.91 ± 4.92 82.65 ± 4.05 71.38 ± 3.42 72.83 ± 2.67 58.26 ± 3.99 33.33 ± 5.04
2DCCA 74.17 ± 19.26 83.70 ± 12.39 90.88 ± 6.29 61.74 ± 12.21 39.86 ± 14.22 13.91 ± 5.19 8.12 ± 3.07

MCCA1+2 53.44 ± 8.32 72.10 ± 3.57 82.39 ± 5.13 75.29 ± 2.89 71.38 ± 3.30 57.75 ± 4.81 32.25 ± 4.96
PCCA 58.65 ± 3.83 80.29 ± 3.58 90.71 ± 3.37 80.65 ± 2.60 78.19 ± 2.76 68.70 ± 2.83 38.55 ± 4.64
BMTF 96.20 ± 1.15 97.75 ± 0.72 98.41 ± 0.81 69.49 ± 4.31 66.23 ± 7.09 44.35 ± 3.92 25.94 ± 6.31

BPCCA 98.71 ± 0.45 99.20 ± 0.41 99.03 ± 0.65 99.20 ± 0.41 99.35 ± 0.41 99.13 ± 0.57 91.52 ± 5.75

A
R

CCA 15.20 ± 4.67 28.77 ± 7.91 48.96 ± 5.31 30.96 ± 4.93 29.45 ± 4.93 24.79 ± 5.97 16.16 ± 3.64
2DCCA 21.33 ± 5.45 33.15 ± 3.28 45.63 ± 7.25 31.64 ± 5.22 23.97 ± 4.80 16.03 ± 6.20 6.71 ± 3.19

MCCA1+2 25.00 ± 4.36 39.45 ± 4.02 56.67 ± 5.45 40.68 ± 5.09 38.63 ± 5.24 29.32 ± 8.17 18.22 ± 4.57
PCCA 23.37 ± 4.45 41.51 ± 6.23 63.13 ± 4.51 41.10 ± 6.36 40.96 ± 5.97 32.74 ± 7.49 22.74 ± 5.09
BMTF 28.88 ± 3.54 42.33 ± 7.00 56.88 ± 5.38 22.05 ± 5.34 20.82 ± 4.69 17.12 ± 3.18 9.73 ± 3.79

BPCCA 40.71 ± 3.45 51.51 ± 7.02 70.21 ± 3.26 49.04 ± 3.92 45.89 ± 5.22 40.68 ± 8.47 25.48 ± 7.59

m=0
Cropping Margin

Fa
ce

m=2 m=4 m=6 m=8

Sk
et
ch

(a) CUHK

m=0
Cropping Margin
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m=2 m=4 m=6 m=8

Sk
et
ch

(b) AR

Figure 1: Cropping examples from CUHK and AR data sets.

the results of the second setting are left in the supplementary
material to save space. Since XM2VTS is no longer free for
access, it is excluded from our experiments. The CUHK and
AR data sets are randomly split so that T = 25, 50, 75 faces
are selected for training and the rest for test, and the average
results over ten such random splits are reported. Each image
is resized to 40× 32 graylevel pixels.

The left half of Table 2 shows that BPCCA achieves the
best performance with statistical significance in all the cases.
Other bilinear methods such as 2DCCA and BMTF also ob-
tain good results, especially on the CUHK data set. This in-
dicates that exploiting the matrix structures benefits com-
mon feature extraction from heterogeneous images. In ad-
dition, bilinear PCCAs outperform their linear counterparts
more significantly when T is small, which implies that they
are more robust against the small sample size problem.

Robustness on photo-sketch matching: To evaluate the
robustness of BPCCA in extracting common features, we
use the same data sets and settings for face photo-sketch
recognition, while images from the first view are cropped
by removing m = 2, 4, 6, 8 pixels from each of the four
sides (see Figure 1), resulting in cropped images of size
(40− 2m)× (32− 2m). Images from the second view still
have the original size of 40×32. Thus, we are matching im-
ages of different sizes. As m increases, photo-sketch pairs
gradually loss some important common information such as
the face and head outlines, which makes photo-sketch recog-
nition more challenging. Since BMTF can only deal with
two-view matrices with the same row dimensions, images of
the second view for BMTF are preprocessed by multilinear
PCA (Lu, Plataniotis, and Venetsanopoulos 2008) to make
the row dimensions of both views equal.

The right half of Table 2 shows the matching performance
on the CUFS data set with T = 50. For the CUHK student
data set, it is clear that BPCCA still performs very well even
when m is large, while the performance of other methods is
drastically degraded by the photo-sketch mismatch. Specif-
ically, when m varies from 2 to 8, BPCCA degrades only
by 1.9% in average. In contrast, BMTF (the 2nd best when
m = 0) degrades by 46.25% in average. This probably be-
cause the model assumptions of BMTF do not hold for im-
ages of different sizes, and some critical common informa-
tion may be lost after dimensionality reduction. For the AR
data set, while all the methods obtain relatively poor match-
ing accuracy when m = 8 due to severe face-sketch mis-
match under large cropping, BPCCA consistently achieves
the best performance, and outperforms PCCA (the 2nd best)
by 5.89% in average. On the whole, BPCCA achieves good
performance, and is more robust against cropping and photo-
sketch mismatch.

Convergence study: Finally, we empirically study the
convergence property of BPCCA and find that BPCCA is
stable and often converges within a relatively small number
of iterations. Due to limited space, we put the detailed results
and discussions in the supplementary material.

Conclusion

This paper proposed BPCCA, a new bilinear extension of
Probabilistic CCA for learning correlations between two-
view matrices. Compared with existing bilinear PCCAs,
BPCCA is more flexible in capturing two-view correlations
and fully enjoys the benefits of the probabilistic framework.
By introducing a hybrid joint model with both vector-based
and matrix-based concatenations, BPCCA not only pre-
serves the matrix structures with improved model flexibility
but also enables parameter estimation with close-form solu-
tions. Experiments on two real-world applications demon-
strated the superior performance of BPCCA in matching
facial images from different poses and face photos-sketch
recognition.
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