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1 Bayesian Low-Tubal-Rank Robust Tensor
2 Factorization with Multi-Rank Determination
3 Yang Zhou and Yiu-Ming Cheung , Fellow, IEEE

4 Abstract—Robust tensor factorization is a fundamental problem inmachine learning and computer vision, which aims at decomposing

5 tensors into low-rank and sparse components. However, existingmethods either suffer from limitedmodeling power in preserving low-

6 rank structures, or have difficulties in determining the target tensor rank and the trade-off between the low-rank and sparse components.

7 To address these problems, we propose a fully Bayesian treatment of robust tensor factorization along with a generalized sparsity-

8 inducing prior. By adapting the recently proposed low-tubal-rankmodel in a generativemanner, our method is effective in preserving low-

9 rank structures. Moreover, benefiting from the proposed prior and the Bayesian framework, the proposedmethod can automatically

10 determine the tensor rankwhile inferring the trade-off between the low-rank and sparse components. Formodel estimation, we develop a

11 variational inference algorithm, and further improve its efficiency by reformulating the variational updates in the frequency domain.

12 Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of the proposedmethod in multi-rank

13 determination as well as its superiority in image denoising and backgroundmodeling over state-of-the-art approaches.

14 Index Terms—Robust PCA, tensor factorization, tubal rank, multi-rank determination, Bayesian inference

Ç

15 1 INTRODUCTION

16 REAL-WORLD data such as images, videos, and social net-
17 works are often high-dimensional, while considered to
18 be approximately low-rank or lie near a low-dimensional
19 manifold. Finding and exploiting low-rank structures from
20 high-dimensional data is a fundamental problem in many
21 machine learning and computer vision applications, e.g., col-
22 laborative filtering [1], face recognition [2], and data mining
23 [3]. Principal Component Analysis (PCA) [4] is a conventional
24 method to seek the best (in the least-squares sense) low-rank
25 representation of given data. It is effective in dealing with the
26 data that is mildly corrupted with small noise, and can be sta-
27 bly computed via singular value decomposition (SVD).
28 However, PCA is very sensitive to outliers, and fails
29 to perform well on data with gross corruptions. Unfortu-
30 nately, the presence of outliers is ubiquitous in real-
31 world applications such as data mining, image process-
32 ing, and video surveillance. For instance, moving objects
33 in a video taken by a stationary camera can be viewed
34 as sparse outliers in the static background. To overcome
35 the sensitivity of PCA to outliers, many robust variants
36 of PCA have been proposed [5], [6], [7], [8]. Among

37them, Robust PCA (RPCA) [6] is arguably the most pop-
38ular method that enjoys both computational efficiency
39and theoretical performance guarantees.
40RPCA assumes that the observed matrix Y can be repre-
41sented as Y ¼ X0 þ S0, where X0 is a low-rank matrix and S0

42is a sparse matrix with only a small fraction of elements
43being nonzero and arbitrary in magnitude. It has been
44proved that, under some broad conditions, X0 and S0 can be
45exactly recovered from Y by solving the following convex
46problem:

min
X;S

kXk� þ �kSk1 s:t: Y ¼ Xþ S; (1)

4848

49where k � k� and k � k1 denote the nuclear norm and ‘1 norm,
50respectively, and � > 0 is the hyper-parameter balancing
51the low-rank and sparse terms. RPCA and its extensions
52have many important applications, such as video denoising
53[9], subspace clustering [10], and object detection [11], to
54name a few.
55One main limitation of RPCA is that it can only deal with
56matrix data, while many real-world data are naturally orga-
57nized as tensors (multidimensional arrays) [12], [13]. For
58example, a color image is a third-order tensor of height �
59width� channel, and a gray-level video can be represented
60as height� width� time. When applying RPCA to tensorial
61data, one has to first reshape the input tensor into a matrix,
62which often leads to loss of structural information and
63degraded performance. To address this problem, tensor
64RPCA (TRPCA) and robust tensor factorization (RTF) meth-
65ods have been proposed, which directly handle tensors for
66exploiting their multidimensional structures.
67Specifically, given a tensor Y 2 RI1�����IN , TRPCA and
68RTF methods assume Y ¼ X 0 þ S0 and seek to recover X 0

69from Y, where X 0 is a tensor with certain low-rank structure
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70 and S0 is sparse. Based on different low-rank models and
71 the corresponding tensor rank definitions, there exist three
72 popular frameworks for solving the TRPCA and RTF prob-
73 lems. They are based on the Tucker [14], CANDECOMP/
74 PARAFAC (CP) [15], [16], and low-tubal-rank models [17],
75 [18], respectively.
76 The Tucker model assumes that the low-rank component
77 X 0 can be well approximated as

X tc ¼ Z �1 U
ð1Þ �2 U

ð2Þ �3 � � � �N UðNÞ; (2)

7979

80 where �n denotes the mode-n tensor product, UðnÞ 2 RIn�Rn

81 (n ¼ 1; . . . ; N) is themode-n factormatrix,Z is the core tensor
82 capturing the correlations among fUðnÞgNn¼1. The Tucker
83 (multilinear) rank [12] of Y is defined as RanktcðYÞ �
84 ðR1; . . . ; RNÞwithRn ¼ RankðYðnÞÞ, where YðnÞ 2 R

In�
Q

m 6¼n
Im

is themode-n unfoldingmatrix ofY.
85 Most Tucker-based TRPCA methods [19], [20] are convex
86 methods. They seek a low-Tucker-rank component by mini-
87 mizing the Sum of Nuclear Norms (SNN) [21] of Y, which is
88 a convex surrogate of the Tucker rank. Some robust Tucker
89 factorizationmethods [22], [23], [24] have also been proposed
90 to perform TRPCA by explicitly fitting the Tucker model
91 with a predetermined Tucker rank. By alternately solving a
92 (nonconvex) least-squares problem, such RTF methods are
93 generally more efficient and empirically perform better than
94 convex TRPCA approaches, provided that the predeter-
95 mined Tucker rank matches the input tensor. However,
96 Tucker-based TRPCAs and RTFs require unfolding the input
97 tensor for parameter estimation, and thus fail to fully exploit
98 the correlations among different tensor dimension [19], [25].
99 The CP model decomposes X 0 into the sum of rank-one

100 tensors as follows:

X cp ¼
XR
r¼1

uð1Þ
r � uð2Þ

r � � � � � uðNÞ
r ; (3)

102102

103 where � denotes the outer product, and uðnÞ
r 2 RIn (n ¼ 1;

104 . . . ; N ; r ¼ 1; . . . ; R) is the rth mode-n factor. The CP rank of
105 Y is given by RankcpðYÞ � R, defined as the smallest num-
106 ber of the rank-one tensor decomposition [12].
107 Since the CP rank is difficult to be determined (known as
108 an NP-hard problem) and its convex relaxation is intracta-
109 ble [26], [27], existing CP-based TRPCA and RTF methods
110 resort to the probabilistic framework to estimate the low-
111 rank component and the CP rank. For example, Bayesian
112 Robust Tensor Factorization (BRTF) [28] estimates the CP
113 model in a fully Bayesian manner to recover tensors with
114 both missing values and outliers. By introducing proper pri-
115 ors, it obtains robustness against overfitting and enables
116 automatic CP rank determination. To handle complex noise
117 and outliers, Generalized Weighted Low-Rank Tensor Fac-
118 torization (GWLRTF) [29] represents the sparse component
119 S as a mixture of Gaussian, and unifies the Tucker and CP
120 factorization in a joint framework. A key advantage of these
121 probabilistic RTF methods over their non-probabilistic
122 counterparts is that the trade-off between the low-rank and
123 sparse components can be naturally optimized without
124 manually tuning. Nevertheless, the CP model is usually
125 considered as a special case of the Tucker model [12], and

126may not have enough flexibility in representing tensors
127with complex low-rank structures.
128Recently, Kilmer et al. [17] defined a multiplication opera-
129tion between tensors, called tensor-tensor product (t-product),
130and proposed tensor-SVD (t-SVD) associated with two new
131tensor rank definitions, i.e., tubal rank andmulti-rank [18] (see
132Section 2 for their formal definitions). The reduced version [30]
133of t-SVD for the low-rank componentX0 is given by

X t�SVD ¼ U � D � Vy; (4)

135135

136where � denotes the t-product,U 2 RI1�R�I3 andV 2 RI2�R�I3

137are orthogonal tensors, and D 2 RR�R�I3 is an f-diagonal ten-
138sor whose frontal slices are all diagonal matrices. The tubal
139rank ofX0 is then defined byRanktðX 0Þ � R.
140The development of t-SVD motivates the low-tubal-rank
141model for representing tensors of low tubal rank, which has
142been successfully applied to the tensor completion problem
143with the state-of-the-art performance achieved [31], [32], [33].
144Compared with the conventional Tucker and CP models, the
145low-tubal-rank model has more expressive modeling power,
146especially for characterizing tensors that have a fixed orienta-
147tion or certain “spatial-shifting” properties, such as color
148images, videos, andmulti-channel audio sequences [17].
149Based on the low-tubal-rank model, Lu et al. [34], [35]
150proposed to use the tensor nuclear norm (TNN) [31] as a
151convex relaxation of the tubal rank, and perform TRPCA by
152solving a convex problem similar to RPCA (1). They further
153analyzed the theoretical guarantee for the exact recovery.
154Outlier-Robust Tensor PCA (OR-TRPCA) combines TNN
155with the ‘2;1 norm to handle sample-specific corruptions,
156which achieves promising results on outliers detection and
157classification. However, similar to RPCA, these methods
158also involve a hyper-parameter as in (1) for adjusting the
159contributions of the low-rank and sparse components. For
160good performance, this balancing parameter has to be care-
161fully determined. If the low-rank component contributes
162too much to the objective function, the outliers will not be
163completely removed. On the other hand, if the sparse com-
164ponent is dominant, the recovered tensor will lose many
165details and cannot fully preserve the low-rank structures.
166Since the trade-off between the low-rank and sparse compo-
167nents should be adjusted according to both the input data
168and tasks, finding an appropriate value for the balancing
169parameter is generally difficult and time consuming in
170practice.
171Besides TNN, low-tubal-rank structures can also be intro-
172duced by explicitly factorizing a given tensor as the t-product
173of two smaller tensors [30], [33]. Such low-tubal-rank tensor
174factorization methods are more efficient and expected to
175obtain better recovery performance than TNN-based meth-
176ods. However, in addition to the balancing parameter, they
177also need to know the target tubal rank in advance. Both
178over- and under-estimation of the tubal rank will lead to the
179degradedperformance. Although a heuristic rank-decreasing
180strategy has been proposed in [33], the study on how to dis-
181cover the underlying tubal rank and multi-rank of a given
182tensor is still very desirable.
183Can we make use of the low-tubal-rank model for RTF without
184suffering from the difficulties in determining the tubal rank and
185the balancing parameter? In this paper, we solve this problem
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186 by introducing low-tubal-rank structures into the Bayesian
187 framework, and propose a fully Bayesian treatment of RTF
188 for third-order tensors, named as Bayesian low-Tubal-rank
189 Robust Tensor Factorization (BTRTF). To the best of our
190 knowledge, this is the first probabilistic/Bayesian method
191 for low-tubal-rank tensor factorization.
192 BTRTF equips the low-tubal-rank model with automatic
193 rank determination, and enables implicit trade-off between
194 the low-rank and sparse components via maximizing the
195 (approximated) posterior probability. In addition, it is well
196 known that the Bayesian framework offers unique advan-
197 tages in capturing data uncertainty, reducing risk of over-
198 fitting, handling missing values, and introducing prior
199 knowledge. These benefits also motivate the development
200 of our BTRTF method. In summary, our contribution is
201 three-fold:

202 1) We propose a generative model for recovering low-
203 tubal-rank tensors from observations corrupted by
204 both sparse outliers of arbitrary magnitude and
205 dense noise of small magnitude, where the observed
206 tensor is factorized into the t-product of two smaller
207 factor tensors.
208 2) We consider automatic rank determination for not
209 only the tubal rank but also the multi-rank, which is a
210 more general and challenging problem. To this end,
211 we propose a generalization of the ARD prior [36]. By
212 incorporating this prior into the Bayesian framework,
213 unnecessary low-rank components can be adaptively
214 removed in the frequency domain, leading to auto-
215 matic multi-rank determination.
216 3) Since exact inference of the proposed generative
217 model is analytically intractable, we develop an effi-
218 cient model estimation scheme via variational approx-
219 imation. By updating the model parameters in the
220 frequency domain instead of the original one, the
221 computational cost of each iteration is greatly reduced
222 from OðR3I33 þRI1I2I

2
3Þ to OðR3I3 þRI1I2I3Þ, when

223 handling a I1 � I2 � I3 tensor with its tubal rank being
224 R.

2252 PRELIMINARIES

226This section introduces notations, definitions, and opera-
227tions used in this paper.

2282.1 Notations

229We denote vectors, matrices, and tensors by bold lowercase,
230bold uppercase, and calligraphic letters (x, X, and X ),
231respectively. R and C denote the fields of real numbers and
232complex numbers, respectively. h�i denotes the expectation
233of a certain random variable, trð�Þ denotes the matrix trace,
234and II denotes the I � I identity matrix. For a vector x,
235diagðxÞ is the diagonal matrix formed by x. For a third-order
236tensor X 2 RI1�I2�I3 , we use the matlab notations to denote
237the ith horizontal, jth lateral, and kth frontal slices of X by

238X!i� ¼ Xði; :; :Þ, X!�j ¼ Xð:; j; :Þ, and XðkÞ ¼ Xð:; :; kÞ, respec-
239tively. xij ¼ Xði; j; :Þ denotes the ði; jÞth tube of X . The con-
240jugate transpose and the Frobenius norm of X are denoted
241as Xy and kXkF , respectively. cirðXÞ 2 RI1I3�I2I3 is the block
242circulant matrix of X , unfoldðXÞ 2 RI1I3�I2 is the unfolded

243matrix of X , x!i� 2 RI2I3 is the unfolded vector of X!y
i� with

244x!i� ¼ unfoldðX!y
i�Þ, and x!�j 2 RI1I3 is the unfolded vector of

245X!�j with x!�j ¼ unfoldðX!�jÞ. Table 1 summarizes the nota-
246tions used in this paper.

2472.2 Discrete Fourier Transformation

248This subsection introduces Discrete Fourier Transformation
249(DFT), which plays a key role in the t-product algebraic
250framework and our BTRTF method. Let �x ¼ FIx be the DFT
251of x 2 RI . FI 2 CI�I is the DFT matrix defined as

FI ¼
1 1 1 � � � 1
1 v v2 � � � vI�1

..

. ..
. ..

. . .
. ..

.

1 vI�1 v2ðI�1Þ � � � vðI�1ÞðI�1Þ

2
664

3
775; (5)

253253

254where v ¼ expð� 2pi
I Þ and i ¼ ffiffiffiffiffiffiffi�1

p
is the imaginary unit. Let

255�X be the DFT of X 2 RI1�I2�I3 along the third dimension,

whose ði; jÞth tube is given by �xij ¼ �Xði; j; :Þ ¼ FI3Xði; j; :Þ.
Using the matlab commands, we have �X ¼ fftðX ; ½	; 3Þ and
X ¼ ifftð �X ; ½	; 3Þ by applying (inverse) Fast Fourier Trans-

form (FFT).
256Let �X 2 CI1I3�I2I3 be the block diagonal matrix whose kth
257diagonal block is given by the kth frontal slice �XðkÞ of �X ,
258that is

�X ¼ bdiagð �XÞ ¼

�Xð1Þ
�Xð2Þ

. .
.

�XðI3Þ

2
6664

3
7775; (6)

260260

261where bdiagð�Þ is the operator that transforms �X to �X. We
262then define circðXÞ 2 RI1I3�I2I3 as the block circulant matrix
263of X as follows:

circðXÞ ¼
Xð1Þ XðI3Þ � � � Xð2Þ

Xð2Þ Xð1Þ � � � Xð3Þ

..

. ..
. . .

. ..
.

XðI3Þ XðI3�1Þ � � � Xð1Þ

2
6664

3
7775: (7)

265265

TABLE 1
Convention of Notations

Notation Description

X 2 RI1�I2�I3 the I1 � I2 � I3 tensor
�X the DFT of X along the third-dimension

X!i� 2 R1�I2�I3 the ith horizontal slice of X
X!�j 2 RI1�1�I3 the jth lateral slice of X
XðkÞ 2 RI1�I2 the kth frontal slice of X
circðXÞ 2 RI1I3�I2I3 the block circulant matrix of X
unfoldðXÞ 2 RI1I3�I2 the unfolded matrix of X
Xy 2 RI2�I1�I3 the conjugate transpose of X
xij 2 RI3 the ði; jÞth tube of X
x!i� ¼ unfoldðX!y

i�Þ 2 RI2I3 the vector formed by unfolding X!y
i�

x!�j ¼ unfoldðX!�jÞ 2 RI1I3 the vector formed by unfolding X!�j
� the t-product

� the outer product


 the Kronecker product
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266 It is well known that block circulant matrices can be block
267 diagonalized by DFT, i.e.,

ðFI3 
 II1ÞcircðXÞðF�1
I3


 II2Þ ¼ �X; (8)
269269

270 where 
 denotes the Kronecker product. The above opera-
271 tors and properties will be frequently used in this paper.

272 2.3 T-Product and T-SVD

273 This subsection introduces the t-product and its associated
274 algebraic framework [18], which lay the foundation of our
275 BTRTF. Let unfoldð�Þ and foldð�Þ be the unfold operator and
276 its inverse operator, respectively. For a third-order tensor
277 X 2 RI1�I2�I3 , unfoldðXÞ is the I1I3 � I2 matrix formed by
278 the frontal slices of X , leading to

unfoldðXÞ ¼ ½Xð1Þ; . . . ;XðI3Þ	; foldðunfoldðXÞÞ ¼ X :280280

281

282 Definition 2.1 (T-product [18]). Given X 2 RI1�R�I3 and
283 Y 2 RR�I2�I3 , the t-product X � Y is the I1 � I2 � I3 tensor

Z ¼ X � Y ¼ foldðcircðXÞfoldðYÞÞ: (9)
285285

286

287 The computation of t-product can also be viewed in a
288 tube-wise way

zij ¼ Zði; j; :Þ ¼
XR
r¼1

xir � yrj; (10)

290290

291 where xir is the ði; rÞth tube of X , yrj is the ðr; jÞth tube of
292 Y, and � reduces to the circular convolution between two
293 tubes of the same size. If we consider the tube zij 2 RI3

294 as an “elementary” component, the third-order tensor Z 2
295 RI1�I2�I3 is just a I1 � I2 matrix of length-I3 tubal scalars.
296 From this perspective, the t-product is analogous to the stan-
297 dardmatrixmultiplication in the sense that the circular convo-
298 lution of tubes replaces the product of elements.
299 Remarks. It is also worth noting that when I3 ¼ 1 the t-
300 product reduces to the matrix multiplication. Moreover, the
301 t-product can be viewed as the matrix multiplication in the
302 Fourier domain, since Z ¼ X � Y is equivalent to �Z ¼ �X�Y
303 because of (8). This is a key property which provides an effi-
304 cient way of computing the t-product and greatly facilitates
305 the model estimation of our BTRTF method shown later. In
306 what follows, we further review some definitions related to
307 the t-product.

308 Definition 2.2 (Identity tensor [17]). The identity tensor
309 I 2 RI�I�I3 is defined as the tensor whose first frontal slice is
310 the I � I identity matrix, and other slices are all zeros.

311 The identity tensor with appropriate sizes satisfies X � I
312 and I � X . The DFT of I , �I ¼ fftðI ; ½	; 3Þ, is the tensor with
313 each frontal slice being the identity matrix.

314 Definition 2.3 (F-diagonal tensor [17]). A tensor is called
315 f-diagonal if its frontal slices are all diagonal matrices.

316 Definition 2.4 (Conjugate transpose [17]). The conjugate

317 transpose of a tensor is defined as the tensor Xy 2 RI2�I1�I3

318 constructed by conjugate transposing each frontal slice of

319 X 2 RI1�I2�I3 and then reversing the order of the transposed
320 frontal slices 2 through I3.

321Definition 2.5 (Orthogonal tensor [17]). A tensor
322Q 2 QI�I�I3 is called orthogonal, provided that Qy � Q ¼ Q�
323Qy ¼ I with I being an I � I � I3 identity tensor.

324Definition 2.6 (T-SVD [17]). Let X be an I1 � I2 � I3 real-
325valued tensor. Then X can be factored as

X ¼ U � D � Vy; (11)
327327

328where U 2 RI1�I1�I3 , V 2 RI2�I2�I3 are orthogonal tensors,
329and D 2 RI1�I2�I3 is an f-diagonal tensor. The factorization
330(11) is called the t-SVD (i.e., tensor SVD).

331The t-SVD provides a way to factorizing any third-order
332tensor into two orthogonal tensors and a f-diagonal tensor.
333When the third dimension I3 ¼ 1, it reduces to the classical
334matrix SVD.

335Definition 2.7 (Tensor tubal rank and multi-rank [18]).
336The multi-rank of a third-order tensor X 2 RI1�I2�I3 is a
337length-I3 vector defined as

RankmðXÞ ¼ ðRankð�Xð1ÞÞ; . . . ; Rankð�XðI3ÞÞÞ;
339339

340where �XðkÞ is the kth frontal slice of �X ¼ fftðX ; ½	; 3Þ and
341Rankð�XðkÞÞ is the rank of �XðkÞ. The tubal rank of X is the num-
342ber of nonzero tubes of D from the t-SVD of X ¼ U � D � Vy,
343i.e.,

RanktðXÞ ¼ #fi;Dði; i; :Þ 6¼ 0g ¼ maxkRankð�XðkÞÞ: 345345

346

347Lemma 1 (Best rank-R approximation [17], [18]). Let
348X ¼ U � D � Vy be the t-SVD of X 2 RI1�I2�I3 . Then given
349tubal rank R < minðI1; I2Þ

XR ¼ arg
X̂2M

minkX � X̂kF

¼
XR
r¼1

Uð:; r; :Þ � Dðr; r; :Þ � Vð:; r; :Þy;
351351

352is the best approximation of X with the tubal rank at most R,
353whereM ¼ fC ¼ A � ByjA 2 RI1�R�I3 ;B 2 RI2�R�I3g.

3543 BAYESIAN LOW-TUBAL-RANK ROBUST TENSOR

355FACTORIZATION

356This section presents our BTRTF method in three steps. We
357first provide the detailed Bayesian model specification for
358BTRTF, and employ the Automatic Relevance Determina-
359tion (ARD) prior [36] for tubal rank determination. Then we
360develop a variational inference method for model estima-
361tion, and further improve its efficiency by using the proper-
362ties of the t-product and reformulating the variational
363updates in the frequency domain. Finally, a generalization
364of the ARD prior is proposed and incorporated into the
365BTRTF model to automatically determine both the tubal
366rank and multi-rank.

3673.1 Model Specification

368We assume that the observed tensor Y 2 RI1�I2�I3 can be
369decomposed into three parts: the low-rank component X ,
370the sparse component S, and the noise term E, i.e.,
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372372

373 where each element of E is assumed to be i.i.d Gaussian,
374 leading to E �Qijk NðEijkj0; t�1Þ with the noise precision t.
375 Given Y, our goal is to recover X and S. Different from
376 most existing works pursuit X of low Tucker or CP rank,
377 we preserve the low-tubal-rank structure of X by factorizing
378 it as a t-product of two smaller factor tensors

X ¼ U � Vy; (13)
380380

381 where U 2 RI1�R�I3 , V 2 RI1�R�I3 , and R � minðI1; I2Þ con-
382 trols the tubal-rank. According to Lemma 1, any tensor with
383 a tubal rank up to R can be factorized as (13) for some U and
384 V satisfyingRanktðUÞ ¼ RanktðVÞ ¼ R [30], [33]. This means
385 that the low-tubal-rank model (13) is flexible enough to pro-
386 vide good approximation for tensors of low tubal rank.
387 Conditional Distribution. Based on the above low-tubal-rank
388 factorization, we can obtain the conditional distribution of the
389 observed tensor Y given the model parameters, which is fac-
390 torized over each tube ofY as follows:

pðYjU;V;S; tÞ ¼
Y
ij

NðyijjU
!

i� � V!y
j� þ sij; t

�1II3Þ: (14)
392392

393

394 Sparse Component. We model the sparse component S by
395 placing independent Gaussian priors over each element of
396 S, that is

pðSjbbÞ ¼
Y
ijk

NðSijkj0;b�1
ijkÞ; (15)

398398

399 where bb ¼ fbijkg and bijk is the precision of the Gaussian
400 distribution for the ði; j; kÞth element Sijk. We further place
401 independent Gamma priors for each bijk and obtain

pðbbÞ ¼
Y
ijk

Gaðbijkjab0 ; bb0Þ; (16)

403403

404 where ab0 and bb0 are the hyper-parameters, and Gaðxja; bÞ ¼
405

baxa�1e�bx

GðaÞ with GðaÞ being the Gamma function. Note that as

bijk becomes large, the corresponding Sijk tends to be zero.

By encouraging most precision variables to take large val-

ues, we can obtain a sparse S for characterizing outliers.
406 ARD Prior. For now, we only consider tubal rank deter-
407 mination, while the results below will be generalized for
408 multi-rank determination in Section 3.4. Since the tubal
409 rank of X is bounded by R, our aim is to introduce lateral-
410 slice sparsity into U and V, so that the minimum R can be

411found by removing unnecessary lateral slices from U and V.
412To this end, we place the ARD prior [36] over the factor ten-
413sors as follows:

pðUj��Þ ¼
YI1
i¼1

YR
r¼1

Nðuirj0; ��1
r II3Þ

¼
YI1
i¼1

Nðu!i�j0; circðLÞ�1Þ;
(17)

415415

416

pðVj��Þ ¼
YI2
j¼1

YR
r¼1

Nðvjrj0; ��1
r II3Þ

¼
YI2
j¼1

Nð v!j�j0; circðLÞ�1Þ;
(18)

418418

419

pð��Þ ¼
YR
r¼1

Gað�rja�0 ; b�0Þ; (19)

421421

422where uir 2 RI3 is the ði; rÞth tube of U, vjr 2 RI3 is the

423ðj; rÞth tube of V, u!i� 2 RI1I3 ¼ unfoldðU!y
i�Þ, v!j� 2 RI2I3 ¼

424unfoldðV!y
j�Þ, �� ¼ ½�1; . . . ; �R	, and �r is the hyper-parameter

that controls the rth lateral slices of U and V. L is the

R�R� I3 tensor whose first frontal slice is the diagonal

matrix LLð1Þ ¼ diagð��Þ and other slices are all zeros. circðLÞ
is just a diagonal matrix formed by the repeated block LLð1Þ.
a�0 and b�0 are the hyper-parameters of ��. With the above pri-

ors, some elements of �� tend to have large values, which in

turn pushes the corresponding lateral slices (U!�r and V!�r)
towards zero. This yields the minimum number of lateral
slices required for the low-tubal-rank factorization of Y, and
thus determines the tubal rank.

425Noise Precision. To complete our fully Bayesian treatment,
426a conjugate Gamma prior is placed over the noise precision
427t, leading to

pðtÞ ¼ Gaðtjat0; bt0Þ; (20)
429429

430where at0 and bt0 are commonly set to small values for intro-
431ducing broad and noninformative priors.
432Joint Distribution. Based on the above model specification,
433we can obtain the joint distribution via pðY;QÞ ¼ pðYjU;
434V;S; tÞpðUj��ÞpðVj��ÞpðSjbbÞpð��ÞpðbbÞpðtÞ, where Q ¼ fU;V; ��;
435S;bb; tg is the collection of all the latent variables in the
436BRTRF model. Fig. 1 shows the graphical model for BTRTF,
437and the logarithm of pðD;QÞ is given by

ln pðY;QÞ ¼ � 1

2

X
ij

tjjyij � U!i� � V!y
j� � sijjj2 � I3 ln t

� �

� 1

2

XI1
i¼1

trðu!>
i� circðLÞu!i�Þ � ln jcircðLÞj

" #

� 1

2

XI2
j¼1

trð v!>
j�circðLÞ v!j�Þ � ln jcircðLÞj

" #

þ
X
r;k

ða�0 � 1Þ ln�ðkÞ
r � b�0�

ðkÞ
r

h i

� 1

2

X
ijk

ðbijkS
2
ijk � ln bijkÞ

þ ðat0 � 1Þ ln t � bt0t þ const:

(21)

439439

440

Fig. 1. Graphical illustration of the BTRTF model.
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441 3.2 Variational Inference

442 Armed with the above results, the BTRTF model can be
443 learned by estimating the posterior distribution pðQjYÞ ¼
444

pðY;QÞR
pðY;QÞdQ . Since pðQjYÞ is generally intractable, we apply

445 variational inference methods [37], [38] for the model esti-
446 mation. Specifically, we seek a variational distribution qðQÞ
447 to approximate the true posterior by minimizing the KL
448 divergence KLðqðQÞjjpðQjYÞÞ ¼ ln pðYÞ � LðqÞ, or equiva-
449 lently maximizing the variational lower bound LðqÞ ¼ R qðQÞ
450 lnfpðY;QÞ

qðQÞ gdQ.

451 For tractable inference, we use the mean field approxima-
452 tion, and assume that qðQÞ can be factorized as

qðQÞ ¼ qðUÞqðVÞqðSÞqð��ÞqðbbÞqðtÞ: (22)
454454

455 Then, the optimal distribution of the jth variable set in
456 terms ofmaxqjðQjÞ LðqÞ takes the following form:

ln qjðQjÞ / hln pðY;QÞiQnQj
; (23)

458458

459 where h�iQnQj
denotes the expectation w.r.t. the variational

460 distributions of all the latent variables in Q except Qj. By
461 applying the explicit form (23) to the joint distribution (21),
462 we can obtain closed-form solutions for the variational pos-
463 terior of each variable setQj.
464 Inference for U and V. With QQj ¼ U , the posterior qðUÞ can
465 be obtained as

qðUÞ ¼
YI1
i¼1

Nðu!i�Þjhu!i�i;SSuÞ; (24)

467467

468 whose parameters are given by

hu!i�i ¼ htiSSucircðhViÞ>ð y!i� � h s!i�iÞ; (25)

470470

471

SSu ¼ htihcircðVÞ>circðVÞi þ circðhLiÞ
� ��1

: (26)
473473

474 Similarly, the posterior distribution of V is given by

qðVÞ ¼
YI2
j¼1

Nð v!j�Þjh v!j�i;SSvÞ; (27)

476476

477 with the mean and covariance

h v!j�i ¼ htiSSvcircðhUiÞ>ð y!�j � h s!�jiÞ; (28)
479479

480

SS
v ¼ htihcircðUÞ>circðUÞi þ circðhLiÞ

� ��1
: (29)

482482

483 The expectations hcircðUÞ>circðUÞi and hcircðVÞ>circðVÞi can
484 be computed as follows:

hcircðUÞ>circðUÞi ¼ I3SS
u þ circðhUiÞ>circðhUiÞ; (30)

486486

487

hcircðVÞ>circðVÞi ¼ I3SS
v þ circðhViÞ>circðhViÞ: (31)489489

490

491 Inference for ��. Similar to the above derivations, the varia-
492 tional posterior of �� is given by

qð��Þ ¼
YR
r¼1

Gað�rja�r ; b�r Þ; (32)
494494

495where the posterior parameters are

a�r ¼ a�0 þ
ðI1 þ I2ÞI3

2
; b�r ¼ b�0 þ

1

2
hku!�rk2 þ k v!�rk2i:

(33) 497497

498The involved expectation can be computed as follows:

hku!�rk2i ¼
X
ik

ðSSu þ hu!i�ihu!i�i>Þðk�1ÞRþr; (34) 500500

501

hk v!�rk2i ¼
X
jk

ðSSv þ h v!j�ih v!j�i>Þðk�1ÞRþr; (35)

503503

504where ð�Þðk�1ÞRþr denotes the ððk� 1ÞRþ rÞth diagonal ele-

505ment of an RI3 �RI3 matrix.
506From (32) and (33), the expectation of �r is given by
507h�ri ¼ a�r =b

�
r , which is controlled by the squared ‘2 norms of

508u!�r and v!�r. Smaller hku!�rk2i and hk v!�rk2i will lead to a
509larger h�ri, which in turn constrains more strongly the cor-
510responding lateral slices towards zero due to (34) and (35).
511Inference for S. By applying (23) with QQj ¼ S, the poste-
512rior distribution of S can be obtained as follows:

qðSÞ ¼
Y
ijk

NðSijkjhSijki; s2
ijkÞ; (36)

514514

515with the parameters

hSijki ¼ htiðhbijki þ htiÞzijk; (37)
517517

518

s2
ijk ¼ ðhbijki þ htiÞ�1; (38)

520520

521where zijk denotes the kth element of yij � hU!i�i � hV!
y
j�i.

522From (37) and (38), hSijki captures the model residuals
523from zijk, and its magnitude is determined by the hyper-
524parameter hbijki and the noise precision hti. The conceptual
525meaning of qðUÞ, qðVÞ, and qðSÞ is that U � Vy explains global
526information of the observed tensor Y with the minimum
527tubal rank, while S explains local information (non-Gaussian
528outliers) that cannot be well represented by the low-
529tubal-rankmodel.
530Inference for bb. The posterior distribution of bb is given by

qðbijkÞ ¼ Gaðbijkjabijk; bbijkÞ; (39)

532532

533whose parameters can be updated as follows:

abijk ¼ ab0 þ
1

2
; bbijk ¼ bb0 þ

1

2
hb2

ijki: (40)
535535

536

537Inference for t. Finally, the noise precision has the follow-
538ing posterior distribution:

qðtÞ ¼ Gaðtjat; btÞ; (41)
540540

541whose parameters can be updated as follows:

at ¼ a0t þ
I

2
; bt ¼ bt0 þ

1

2

X
ij

hjjyij � U!i� � V!y
j� � sijjj2i:

(42) 543543
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544 The expectation of the model error is given by

hjjyij � U!i� � V!y
j� � sijjj2i ¼ I1I2I3trðSSu

SS
vÞ

þ I1I3h v!j�i>SSuh v!j�i þ I2I3hu!i�i>SSvhu!i�i
þ jjyij � hU!i�i � hV!j�iy � hsijijj2 þ

X
ijk

s2
ijk:

(43)
546546

547

548 3.3 Efficient Updates in Frequency Domain

549 Although the above variational inference involves only
550 closed-form updates, it is still relatively time consuming.
551 Specifically, the updates for qðUÞ and qðVÞ dominate the
552 whole variational inference. They require inversing and
553 multiplying the RI3 �RI3 covariance matrices SS

u and SS
v,

554 leading to OðR3I33 þRI1I2I
2
3Þ time complexity. This is

555 impractical when dealing with real-world data with large I3.
556 Fortunately, such time complexity can be greatly reduced by
557 using DFT and reformulating the variational updates in the
558 frequency domain. In what follows, we provide efficient varia-
559 tional updates for BTRTF, which not only reduce the time
560 complexity to OðR3I3 þRI1I2I3Þ, but also lay the foundation
561 for automaticmulti-rank determination.
562 From (25), we can group all the horizontal slices of U
563 together and obtain

unfoldðhUiyÞ ¼ hðu!1�; . . . ; u!I1�Þi
¼ htiSSucircðhViÞ>unfoldðYy � hSiyÞ:

565565

566 It is worth noting that although SS
u and circðhViÞ have a large

567 size of RI3 �RI3, both of them are block circulant matrices
568 and can be block diagonalized by DFT. As a result, their
569 multiplication and inverse can be efficiently computed in
570 the frequency domain.
571 Let F̂ ¼ FI3 
 II1 and h�Uyi ¼ fftðhUyi; ½	; 3Þ be the block-
572 wise DFT matrix and the DFT of hUyi, respectively. Then, it
573 is easy to verify that

unfoldðh�UiyÞ ¼ F̂ � unfoldðhUiyÞ
¼ htiF̂SSuF̂�1F̂ � circðhViÞ>F̂�1F̂ � unfoldðYy � hSiyÞ:

575575

576 This indicates that h�Ui can be computed in a block-wise man-
577 ner by using (7), and similar results hold for h�Vi as well.
578 Therefore, we can infer qðUÞ and qðVÞ by equivalently
579 updating the DFTs of their parameters instead of the origi-
580 nal ones. Specifically, the kth frontal slice of h�Ui and h�Vi can
581 be updated as follows:

h�UðkÞi ¼ htið�YðkÞ � h�SðkÞiÞh�VðkÞi�SSuðkÞ; (44)
583583

584

�SSuðkÞ ¼ ðhtih�VðkÞy �VðkÞi þ diagðh��iÞÞ�1; (45)
586586

587

h�VðkÞi ¼ htið�YðkÞ � h�SðkÞiÞyh�UðkÞi�SSvðkÞ; (46)
589589

590

�SSvðkÞ ¼ ðhtih�UðkÞy �UðkÞi þ diagðh��iÞÞ�1; (47)
592592

593 where h�UðkÞi 2 CI1�R, h�VðkÞi 2 CI2�R, and h�SðkÞi 2 CI1�I2

594 denote the kth frontal slice of h�Ui, h�Vi, and h�Si, respectively.
595 The expectations in �SSuðkÞ and �SSvðkÞ can be computed by

h�UðkÞy �UðkÞi ¼ I1I3 �SS
vðkÞ þ h�UðkÞiyh�UðkÞi; (48)

h�VðkÞy �VðkÞi ¼ I2I3 �SS
uðkÞ þ h�VðkÞiyh�VðkÞi: (49)

596With the above results, we avoid directly manipulating
597the RI3 �RI3 covariance matrices in (25) and (28), and turn
598to updating I3 much smaller frontal slices in the frequency
599domain via (44) and (46). Consequently, the computational
600cost for estimating qðUÞ and qðVÞ is reduced from OðR3I33þ
601RI1I2I

2
3Þ toOðR3I3 þRI1I2I3Þ. The estimation for �� and t can

602also be accelerated by computing the expectations (34), (35),
603and (43) in the frequency domain, leading to

hku!�rk2i ¼
XI3
k¼1

I1 �SS
uðkÞ þ 1

I3
h�UðkÞiyh�UðkÞi

� �
rr

; (50) 605605

606

hk v!�rk2i ¼
XI3
k¼1

I2 �SS
vðkÞ þ 1

I3
h�VðkÞiyh�VðkÞi

� �
rr

; (51) 608608

609

X
ij

hjjyij � U!i� � V!y
j� � sijjj2i

¼ jjY � hUi � hViy � hSijj2F þ I1I2I3
XI3
k¼1

trð�SSuðkÞ�SSvðkÞÞ

þ I1
XI3
k¼1

trð�SSuðkÞh�VðkÞiyh�VðkÞiÞ

þ I2
XI3
k¼1

trð�SSvðkÞh�UðkÞiyh�UðkÞiÞ þ
X
ijk

s2
ijk;

(52)

611611

612where ð�Þrr denotes the rth diagonal element of a R�R
613matrix. As S and bb are factorized over elements, their updates
614cannot be further accelerated in the frequency domain, and
615stay the same.

6163.4 Multi-Rank Prior

617While the ARD prior achieves automatic tubal rank determi-
618nation by introducing slice-wise sparsity in U and V, it is still
619too restrictive to determine the multi-rank. Recall that the
620low-tubal-rank model X ¼ U � Vy is equivalent to �X ¼ �U�Vy

621because of (7), and the kth diagonal block of �X is given by
622�XðkÞ ¼ �UðkÞ �VðkÞy [35]. From Definition 2.7, the multi-rank of X
623is the vector RankmðXÞ ¼ ðRankð�Xð1ÞÞ; . . . ; Rankð�XðI3ÞÞÞ, and
624its kth element Rankð�XðkÞÞ is controlled by the number of col-

625umns in �UðkÞ and �VðkÞ. Notice that the tubal rank RanktðXÞ ¼
626maxkRankð�XðkÞÞ is just the largest element ofRankmðXÞ. This
627indicates that determining multi-rank is a more general and

628challenging problem.
629For automatic multi-rank determination, we need to fit
630the observed tensor while reducing the effective multi-rank.
631To this end, we propose a generalized ARD prior, named as
632multi-rank prior, by imposing sparse constraints on the col-

633umns of �UðkÞ and �VðkÞ. Similar to (17) and (18), we still place
634a Gaussian prior over the latent factors U and V as follows:

pðUj��mÞ ¼
YI1
i¼1

YR
r¼1

Nðuirj0; circð��rÞ�1Þ

¼
YI1
i¼1

Nðu!i�j0; circðLmÞ�1Þ;
(53)

636636
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637

pðVj��mÞ ¼
YI2
j¼1

YR
r¼1

Nðvjrj0; circð��rÞ�1Þ

¼
YI2
j¼1

Nð v!j�j0; circðLmÞ�1Þ;
(54)

639639

640 where ��m ¼ f�ðkÞ
r g, ��r ¼ ½�ð1Þ

r ; . . . ; �ðI3Þ
r 	>, circð��rÞ 2 RI3�I3 is

641 the circulant matrix constructed by ��r, and Lm is the
642 R�R� I3 f-diagonal tensor whose kth frontal slice is given

643 by LLðkÞ
m ¼ diagð½�ðkÞ

1 ; . . . ; �
ðkÞ
R 	Þ. To make sure circð��rÞ is sym-

metric as a valid covariance matrix, we define �ðkÞ
r ¼

�ðI3�k�2Þ
r for k ¼ 2; . . . ; I3.

644 Compared with (17) and (18), our multi-rank prior has a
645 similar form with the ARD prior, while the precision matrix
646 for each tube is changed from ��1

r II3 to circð��rÞ. Essentially,
647 the ARD prior assumes that all the elements in U and V are
648 independent, and makes each pair of lateral slices (U!�r and
649 V!�r) governed by the same hyper-parameter �r. On the
650 other hand, the proposed multi-rank prior takes a more gen-

651 eral covariance matrix circð��rÞ for the tubes of U!�r and V!�r,
652 and thus generalizes the ARD prior by characterizing the
653 correlations within each tube of U and V.
654 By incorporating (53) and (54) into the BTRTF model, the
655 posterior distributions of U and V still follow (24) and (27),
656 respectively, expect that the term circðhLiÞ is replaced by
657 circðhLmiÞ in the covariance matrices (26) and (29). In the
658 frequency domain, the updates for hu!i�i and h v!j�i are still
659 the same via (44) and (46), repressively, while the updates
660 for SSv and SSu become

�SSuðkÞ ¼ ðhtih�VðkÞy �VðkÞi þ h�LLðkÞ
m iÞ�1; (55)

662662

663

�SSvðkÞ ¼ ðhtih�UðkÞy �UðkÞi þ h�LLðkÞ
m iÞ�1; (56)

665665

666 where h�LLðkÞ
m i ¼ diagð½h��ðkÞ

1 i; . . . ; h��ðkÞ
R i	Þ is the kth frontal slice

667 of h�Lmi ¼ fftðhLmi; ½	; 3Þ.
668 Due to the more general precision matrix circðLmÞ, incor-
669 porating the multi-rank prior leads to the determinant term
670 ln jcircðLmÞj. Unlike the ARD case with ln jcircðLÞj ¼ I3

PR
r¼1

671 ln�r, it cannot be decomposed into the sum of ln�ðkÞ
r . Conse-

672 quently, placing a Gamma distribution over �ðkÞ
r will no lon-

673 ger lead to a tractable variational posterior qð�ðkÞ
r Þ. To address

674 this problem, we treat ��ðkÞ
r rather than �ðkÞ

r as a latent variable
675 and place a Gammadistribution over it, leading to

pð���mÞ ¼
YR
r¼1

YI3
k¼1

Gað��ðkÞ
r ja�0 ; b�0Þ; (57)

677677

678 where we have defined ���m ¼ f ��ðkÞ
r g.

679 It is worth noting that although the hyper-parameters ��m

680 are coupled, their DFTs ���m are decomposable in ln jcirc
681 ðLmÞj ¼

P
rk ln

��ðkÞ
r by applying (7). Due to this fact, we can

682 substitute the prior distributions (53), (54), and (57) into the
683 explicit form (23), and obtain the variational posterior for
684 ���m as follows:

qð���mÞ ¼
YR
r¼1

YI3
k¼1

Gað��ðkÞ
r ja�rk; b�rkÞ; (58)

686686

687where the posterior parameters can be updated by

a�rk ¼ a�0 þ
I1 þ I2

2
; (59)

689689

690

b�rk ¼ b�0 þ
1

2I3
ðh�UðkÞy �UðkÞi þ h�VðkÞy �VðkÞiÞrr: (60)

692692

693The involved expectations h�UðkÞy �UðkÞi and h�VðkÞy �VðkÞi have
694been given by (48) and (49), respectively, and the posterior
695mean is given by h ��ðkÞ

r i ¼ a�rk=b
�
rk.

696Sparsity in the Frequency Domain. Let �uðkÞ
r and �vðkÞr be the rth

697component (column) of �UðkÞ and �VðkÞ. An intuitive interpreta-
698tion of qð���mÞ (58) is that a�rk is related to the number of ele-
699ments in �uðkÞ

r and �vðkÞr , and b�rk is related to the squared ‘2
700norms hk�uðkÞ

r k2i ¼ ðh�UðkÞy �UðkÞiÞrr and hk�vðkÞr k2i ¼ ðh�VðkÞy �VðkÞiÞrr.
701Smaller hk�uðkÞ

r k2i and hk�vðkÞr k2iwill lead to a larger ��ðkÞ
r , which

702in turn pushes the corresponding �uðkÞ
r and �vðkÞr towards

703zero. In this way, the multi-rank prior effectively makes
704unnecessary components �uðkÞ

r and �vðkÞr inactive by con-
705straining them to zero, and thus results in automatic
706multi-rank determination.
707Refinement with Relaxed Regularization. In our experiments,
708we find the multi-rank prior may lead to premature model
709and prune most factors before fitting the input data. To
710address this problem, we propose a refinement trick to relax
711the regularization effect of the multi-rank prior especially at
712early iterations. Specifically, we gradually strengthen the
713regularization effect by making the following modifications

714in updating �SSuðkÞ and �SSvðkÞ

�SSuðkÞ ¼ ðhtih�VðkÞy �VðkÞi þ Fit

g
h�LLðkÞ

m iÞ�1; (61)
716716

717

�SSvðkÞ ¼ ðhtih�UðkÞy �UðkÞi þ Fit

g
h�LLðkÞ

m iÞ�1; (62)

719719

720where g > 0 is the relaxation parameter that adjusts the over-
721all regularization strength of h�LLðkÞ

m i. Fit ¼ 1� hjjY� U � Vy �
722SjjF i=jjYjjF indicates the goodness of fit for the BTRTFmodel
723(12), where hjjY � U � Vy � SjjF i is the square root of (52).
724At the first few iterations, the low-tubal-rank model will
725not fit the observed tensorYwell, leading to a relatively large
726model error and small Fit. In this case, the regularization
727term h�LLðkÞ

m i does not have much effect on the parameter esti-
728mation, and thus no factor will be pruned at early iterations.
729As the BTRTF model fits Y better and better, Fit tends to
730converge to 1 and gradually strengthens the regularization
731effect. Eventually, the refined updates (61) and (62) return to
732the original ones (55) and (56) given g ¼ 1. In general, the
733parameter g could be tuned for different applications, while
734we find that simply fixing g ¼ I3 is enough to achieve good
735performance in most cases. Therefore, we set g ¼ I3 in all the
736experiments unless otherwise specified. Algorithm 1 sum-
737maries the variational inference method for BTRTF with
738multi-rank determination.

7393.5 Initialization

740Since the variational inference method converges only to a
741local optimum, it is necessary to select a reasonable initiali-
742zation to avoid poor local solutions. For BTRTF, we set the
743top level hyper-parameters a�0 , b

�
0 , a

b
0 , b

b
0 , a

t
0, and bt0 to 10�6
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744 for introducing noninformative priors. We then set the
745 model precision hti ¼ at0=b

t
0 ¼ 1. The factor tensors hUi and

746 hVi can be initialized randomly by drawing each element

747 from Nð0; 1Þ. Another choice is to set hUi ¼ U0 � D
1
2
0 and

748 hVi ¼ V0 � D
1
2
0, where U0, V0, and D0 are obtained from the t-

749 SVD of Y ¼ U0 � D0 � Vy
0. The covariance matrices SSu and SS

v

750 are set to the identity matrix, and the hyper-parameter h��ðkÞ
r i

751 for �uðkÞ
r and �vðkÞr is set to a�0=b

�
0 ¼ 1. The hyper-parameter

752 hbijki is set to 1=s2
0, and the sparse component hSijki is

753 drawn from the uniform distribution Uð0; s0Þ, where s2
0 is a

754 task-specific constant and serves as the initialized variance
755 of Sijk (see Sections 4.2 and 4.3 for more details).

756 Algorithm 1. BTRTF with Multi-Rank Determination

757 1: Input: The observed tensor Y 2 RI1�I2�I3 and the initialized
758 multi-rank RankmðX̂0Þ 2 RI3 .
759 2: Initialize U, SSu, V, SSv, ���m, S, bb, and t.
760 3: repeat
761 4: Update the posterior qðUÞ via (44) and (61);
762 5: Update the posterior qðVÞ via (46) and (62);
763 6: Update the posterior qð���mÞ via (58);
764 7: Update the posterior qðSÞ via (36);
765 8: Update the posterior qðbbÞ via (39);
766 9: Update the posterior qðtÞ via (41);
767 10: Reduce the effective multi-rank by removing
768 zero-components of �UðkÞ and �VðkÞ;
769 11: until convergence.

770 3.6 Connections with Existing Work

771 In this work, we mainly focus on the TRPCA problem, i.e.,
772 recovering tensors corrupted with outliers. One representa-
773 tive TRPCA method is SNN [21], which finds the uncor-
774 rupted tensor by minimizing the Tucker rank. KDRSDL [22]
775 also seeks recovering a low-Tucker-rank tensor, while this is
776 achieved by fitting the Tucker model with a predetermined
777 Tucker rank. BRTF [28] formulates CP factorization under
778 the Bayesian framework to obtain probabilistic outputs and
779 automatic CP rank determination. The proposed BTRTF
780 method also takes advantage of the Bayesian framework.
781 Different from BRTF, it represents the uncorrupted tensor
782 with the low-tubal-rankmodel instead of the CP one, leading
783 tomore expressivemodeling power andmore efficient varia-
784 tional updates.
785 Except the TRPCA problem, there have beenmany proba-
786 bilistic tensor factorization methods for other applications
787 such as tensor completion [33], [39], [40], [41], network analy-
788 sis [42], [43], feature selection [44], multi-view learning [45],
789 etc. For example, Bayesian Probabilistic Tensor Factorization
790 [40] uses the CP model with the smooth constraints on the
791 time dimension to address the temporal collaborative filter-
792 ing problem. Infinite Tucker Decomposition [42], [43] intro-
793 duces tensor-variate Gaussian and t processes into the
794 Tucker model to discover nonlinear interactions among ten-
795 sor elements. Bayesian multi-tensor factorization [45] pro-
796 poses a relaxed model to jointly factorize multiple matrices
797 and tensors, which can be viewed as a trade-off between the
798 matrix (Tucker-1) and CP factorization.
799 Most existing probabilistic tensor factorization methods
800 are based on the Tucker or CP model. In contrast, BTRTF is

801based on the low-tubal-rank model with very distinct
802Bayesian formulations. Although BTRTF is developed for
803the TRPCA problem, its low-tubal-rank model specification
804and variational inference scheme are general enough and
805could be extended for other applications such as tensor
806completion and feature extraction.

8074 EXPERIMENTS

808This section evaluates our BTRTF on both synthetic and
809real-world datasets. We apply BTRTF to image denoising
810and background modeling, and compare it against several
811state-of-the-art RPCA methods, including RPCA baselines:
812RPCA [6], VBRPCA [46]; CP based RTF: BRTF [28]; Tucker
813based TRPCAs: SNN [47], KDRSDL [22]; and Low-tubal-rank
814TRPCAs: TNN [35], OR-TPCA [48].1

8154.1 Validation on Synthetic Data

816We first validate the effectiveness of BTRTF in tensor recovery
817and multi-rank determination on synthetic datasets. The syn-
818thetic data are generated as follows: Two factor tensors
819U 2 RI�R�I and V 2 RI�R�I are randomly generated with
820their elements independently drawn from the standard
821Gaussian distributionNð0; 1Þ. Then, the low-rank component
822is constructed by X gt 2 RI�I�I ¼ U � Vy, and is further trun-
823cated by t-SVD to have RankmðX gtÞ ¼ ðRð1Þ

gt ; . . . ; R
ðIÞ
gt Þ. We

824generate the sparse component Sgt 2 RI�I�I by randomly
825selecting r% of the I3 elements to be nonzero, whose
826values are uniformly drawn from ½�10; 10	. The noise term
827E 2 RI�I�I is generated by independently sampling its ele-
828ments from Nð0; s2Þ with the noise variance s2 ¼ 0 or
829s2 ¼ 10�3, where s2 ¼ 0 indicates the noise-free case. Finally,
830the observed tensor is constructed by Y ¼ X gt þ Sgt þ E. In
831this experiment, we initialize the sparse component with
832s2

0 ¼ 1 and set the relaxation parameter g ¼ 1, so that their
833valueswill have no effect onmodel estimation. The initialized
834rank of BTRTF is set to RankmðX̂ 0Þ ¼ ð0:5I; . . . ; 0:5IÞ 2 RI .

835The convergence criterion is tol ¼ jjX̂ t�X̂ t�1jjF
jjX̂ t�1jjF

< 10�6, where

836X̂ t is the estimated low-rank component at the tth iteration.

837Table 2 shows the recovery results of BTRTF on the
838synthetic data, where the rank error is defined as Rerr ¼
839

PI
k¼1

jR̂ðkÞ�R
ðkÞ
gt j

I3
and R̂ðkÞ is the estimated rank of the kth fron-

840tal slice. As can be seen, BTRTF provides the correct multi-
841rank in all the cases. It also obtains accurate reconstructions
842for the low-rank and sparse components on the both noise-
843free and noisy data. These demonstrate that BTRTF is capa-
844ble of accurately recovering corrupted tensors and deter-
845mining the correct multi-rank.
846To further test BTRTF in multi-rank determination, we
847compare BTRTF with Tensor Completion by Tensor Factori-
848zation (TCTF) [33], which is a low-tubal-rank tensor com-
849pletion method equipped with a heuristic multi-rank
850determination strategy. Since TCTF cannot handle outliers,
851BTRTF and TCTF are performed on synthetic tensors with-
852out outliers (r ¼ 0%) for fair comparison. Table 3 shows the

1. Since OR-TPCA is designed mainly for classification and per-
forms worse than TNN in our experiments, its results are not reported
for simplicity.
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853 rank determination results of TCTF and BTRTF on the syn-
854 thetic datasets with r ¼ 0%. BTRTF correctly determines the
855 multi-rank and accurately reconstructs the low-rank com-
856 ponent. In contrast, TCTF fails to determine the correct
857 multi-rank and leads to large reconstruction error. This
858 demonstrates the superiority of BTRTF in multi-rank
859 determination.
860 For comprehensiveness, BTRTF is also tested on the syn-
861 thetic tensor Y 2 RI1�I2�I3 with I1 6¼ I2 6¼ I3, and still obtains
862 good results. Please refer to the supplementary materials for
863 more details, which can be found on the Computer Society
864 Digital Library at http://doi.ieeecomputersociety.org/
865 10.1109/TPAMI.2019.2923240.

866 4.2 Image Denoising

867 This section considers image denoising for removing ran-
868 dom noise from corrupted color images. In this task, clean
869 images are approximated by the low-rank component,
870 while random corruptions are regarded as sparse outliers.
871 Experimental Setup. We evaluate BTRTF and the com-
872 peting methods on the Berkeley segmentation datasets
873 (BSD500) [49], which consists of 500 color images repre-
874 sented by 321� 481� 3 or 481� 321� 3 tensors. We cor-
875 rupt each color image by setting 10 percent of its elements
876 to random values in [0, 255], so that up to 30 percent pixels
877 are corrupted. Following the common settings, the pixel val-
878 ues of each image are further normalized to [0, 1], and we
879 use peak signal-to-noise ratio (PSNR) to measure the recov-
880 ery performance. Given the recovered tensor X̂ 2 RI1�I2�I3

881 and the ground truth X gt 2 RI1�I2�I3 , PSNR can be com-
882 puted as follows:

PSNR ¼ 10 log10
kX gtk21

1
I1I2I3

kX̂ � X gtk2F

 !
;

884884

885where k � k1 is the infinity norm.
886Parameter Settings. For RPCAandVBRPCA,we reshape the
887input tensors into 321� 1443 or 481� 963 matrices, because
888they cannot directly deal with tensorial data. For RPCA,
889VBRPCA, BRTF and KDRSDL, we employ their default
890parameter settings, which lead to good performance in most
891cases. For SNN and TNN, we follow the parameter settings
892suggested in [34], [35]. For BTRTF, we set the initialized multi
893rank toRankmðX̂0Þ ¼ ð150; 150; 150Þ, and the convergence cri-
894terion to tol < 10�4. The sparse component is initialized with
895s2

0 ¼ 10�7, so that Ŝ0 is very close to a zero tensor. This makes
896BTRTF prefer fitting the input image via the low-rank compo-
897nent rather than the sparse one. Such settings are suitable for
898image denoising, where only the low-rank component (recov-
899ered image) is of interest.
900Results and Analysis. Fig. 2 shows the recovered images
901and PSNR values on 8 sample images of the BSD500 dataset.2

902It can be seen that BTRTF obtains the highest average PSNR
903value and achieves the best performance on 402 out of the
904total 500 images from the BSD500 dataset. Specifically, it out-
905perform the second best, TNN, by 1.90 on average. This can
906be attributed to the BTRTF model in capturing low-tubal-
907rank structures and the Bayesian framework in estimating
908sparse outliers. In addition, tensor-based methods such as
909KDRSDL, TNN and BTRTF often obtain much better results
910than the matrix-based ones. This is probably because RPCA
911and VBRPCA are performed on the reshaped images, and
912fail to capture the correlations across RGB channels. Among
913tensor-based methods, TNN and BTRTF achieve the top two
914performance in most cases. This demonstrates that t-SVD
915based models have an edge over the classical CP and Tucker
916models in representing color images.
917We also compare the average running time of each RPCA
918method on all 500 images from the BSD500 dataset. From

TABLE 2
Recovery Results of BTRTF on the Synthetic Datasets

TABLE 3
Rank Determination Results on the Synthetic Datasets with

r ¼ 0%

2. We also provide the normalized mean square error (NMSE)
results in the supplementary materials, available online.
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919 Fig. 2j, RPCA and VBRPCA are the fastest methods, but they
920 fail to perform well as they cannot fully utilize the tensor
921 structures and tend to obtain an inaccurate low-rank com-
922 ponent with the underestimated rank. BTRTF is faster than
923 the non-convex TRPCAs, BRTF and KDRSDL, while slower
924 than the convex methods such as SNN and TNN.
925 In summary, BTRTF obtains the best recovery results, pro-
926 vides probabilistic outputs, and achieves automatic rank
927 determination, although it takes some computational cost for
928 these benefits. It is worth noting that BTRTF is much faster
929 than BRTFwith better performance, despite the fact that both
930 of them are based on variational inference for Bayesianmodel
931 estimation. This can be attributed to the low-tubal-rank
932 model of BTRTF in better representing color images and
933 enabling themore efficient variational updates via estimating
934 themodel parameters in the frequency domain.

935 4.3 Background Modeling

936 This section evaluates BTRTF on the background modeling
937 problem, which aims at separating foreground objects and
938 background from a given video sequence. We consider vid-
939 eos recorded by stationary cameras, which are common in

940video surveillance. In this case, background components of
941different frames are highly correlated, and thus can be well
942characterized by low-rank models. On the other hand, fore-
943ground objects generally change a lot and can be considered
944as sparse outliers.
945Experimental Setup. We conduct experiments on 15 videos
946from the I2R [50] and CDnet [51] datasets. The I2R dataset
947consists of 9 real-world videos (Bootstrap, Campus, Curtain,
948Escalator, Fountain, Hall, Lobby, ShoppingMall, WaterSur-
949face) in different scenarios including static background,
950dynamic background, and slow object movement. For each
951video, 20 frames are labeledwith the ground truth. TheCDnet
952dataset consists of 31 videos grouped as 6 categories repre-
953senting a variety of motion and change detection challenges,
954where the foreground objects are well annotated for each
955frame. We test all 6 videos (Boats, Canoe, Fall, Fountain01,
956Fountain02, Overpass) in the dynamic background category,
957which is one of themost difficult categories for mounted cam-
958era object detection. Since most videos in the I2R and CDnet
959datasets have different sizes and frame numbers, we extract
960300 frames and downsample them to around 160� 180, so
961that the input tensors have similar sizes (160� 180� 300).

Fig. 2. Recovery results on the BSD500 dataset. (a) Original image; (b) Corrupted image; (c)-(i) Recovered images by different robust PCA methods;
(j) Comparison of PSNR values on the above 8 images. Best viewed in �4 sized color pdf file.
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962 For quantitative evaluation, we compare the estimated
963 sparse component (foreground) Ŝ with the ground truth
964 Sgt, and regard this as a classification problem. Following
965 the standard settings [11], [52], we evaluate the background
966 subtraction results by precision, recall, and F-measure,
967 which are defined as

Precision ¼ TP

TPþ FP
;Recall ¼ TP

TPþ FN
;

F-measure ¼ 2
Precision � Recall
PrecisionþRecall

;

969969

970 where TP, FP, and FN represent the number of true posi-
971 tives, false positives, and false negatives, respectively. The
972 higher these three measurements, the better the perfor-
973 mance is.
974 Parameter Settings. For RPCA and VBRPCA, each video is
975 first unfolded along the time dimension into the matrix of
976 size around 28800� 300, and then fed into the correspond-
977 ing RPCA methods. Since there is no training/test partition

978for the backgroundmodeling problem,we empirically select,
979if necessary, the tuning parameters for the competing meth-
980ods, so that they can perform well on most video sequences.
981For BTRTF, we initialize s2

0 to a large value 107. This allows
982BTRTF to capture outliers of large magnitude (foreground
983objects), and often leads to better foreground/background
984separation. The initialized multi-rank for BTRTF is set to
985RankmðX̂0Þ ¼ ðminðI1; I2Þ � 1 . . . ;minðI1; I2Þ � 1Þ 2 R300 for
986the I1 � I2 � 300 video sequence.

9874.3.1 Quantitative Evaluation

988Table 4 shows the foreground detection results on the I2R and
989CDnet datasets. It can be seen that BTRTF achieves the top two
990performance in most cases, and obtains the best average
991results in precision, recall, and F-measure. TNN is the second
992best method, while it is still significantly worse than BTRTF by
9930.17 in F-measure on average. These demonstrate: 1) t-SVD
994based methods such as BTRTF and TNN are effective in back-
995ground reconstruction by exploiting the correlations along the

TABLE 4
Summary of Precision, Recall, and F-Measure on the I2R and CDnet Datasets (Best; Second Best)

Videos

RPCA VBRPCA BRTF SNN KDRSDL TNN BTRTF

P
F

P
F

P
F

P
F

P
F

P
F

P
F

R R R R R R R

Bootstrap 0.51 0.34 0.34 0.32 0.73 0.53 0.61 0.43 0.79 0.57 0.79 0.55 0.55 0.55
0.26 0.30 0.42 0.33 0.45 0.42 0.54

Campus 0.09 0.13 0.11 0.16 0.51 0.55 0.14 0.22 0.16 0.20 0.52 0.64 0.87 0.61
0.29 0.28 0.61 0.67 0.27 0.83 0.47

Curtain 0.52 0.59 0.40 0.42 0.72 0.58 0.64 0.55 0.71 0.69 0.88 0.70 0.94 0.91
0.46 0.44 0.49 0.49 0.67 0.59 0.88

Escalator 0.38 0.40 0.35 0.38 0.77 0.69 0.47 0.50 0.58 0.39 0.73 0.73 0.85 0.73
0.43 0.42 0.62 0.51 0.30 0.73 0.64

Fountain 0.16 0.22 0.16 0.22 0.58 0.66 0.25 0.34 0.26 0.40 0.32 0.47 0.86 0.82
0.33 0.34 0.75 0.53 0.93 0.85 0.79

Hall 0.25 0.33 0.26 0.35 0.60 0.58 0.34 0.43 0.48 0.58 0.65 0.64 0.71 0.63
0.49 0.55 0.56 0.59 0.73 0.63 0.56

Lobby 0.11 0.15 0.06 0.09 0.55 0.52 0.17 0.23 0.75 0.82 0.83 0.71 0.82 0.82
0.24 0.18 0.50 0.35 0.89 0.62 0.83

ShoppingMall 0.45 0.44 0.30 0.34 0.74 0.73 0.57 0.58 0.73 0.77 0.80 0.79 0.70 0.73
0.44 0.40 0.73 0.58 0.82 0.78 0.76

WaterSurface 0.24 0.22 0.27 0.26 0.56 0.36 0.29 0.28 0.30 0.30 0.46 0.36 0.98 0.89
0.20 0.25 0.27 0.26 0.31 0.29 0.81

Boats 0.71 0.49 0.95 0.68 0.79 0.42 0.45 0.45 0.63 0.30 0.55 0.19 0.99 0.70
0.37 0.53 0.29 0.44 0.19 0.12 0.54

Canoe 0.33 0.38 0.47 0.54 0.55 0.44 0.31 0.38 0.12 0.20 0.29 0.28 0.99 0.75
0.44 0.64 0.37 0.52 0.46 0.27 0.61

Fall 0.25 0.23 0.20 0.22 0.69 0.40 0.52 0.42 0.49 0.52 0.75 0.52 0.89 0.88
0.21 0.25 0.28 0.35 0.55 0.40 0.86

Fountain01 0.02 0.04 0.02 0.03 0.03 0.06 0.02 0.03 0.02 0.03 0.03 0.05 0.02 0.04
0.23 0.31 0.33 0.27 0.50 0.39 0.37

Fountain02 0.10 0.17 0.05 0.10 0.41 0.51 0.26 0.35 0.07 0.13 0.19 0.31 0.19 0.30
0.48 0.54 0.66 0.56 0.88 0.72 0.74

Overpass 0.38 0.32 0.40 0.38 0.77 0.52 0.39 0.42 0.63 0.64 0.87 0.57 0.93 0.74
0.27 0.37 0.40 0.46 0.65 0.42 0.61

Average 0.30 0.30 0.29 0.30 0.60 0.47 0.36 0.37 0.45 0.44 0.58 0.50 0.75 0.67
0.34 0.39 0.49 0.46 0.57 0.54 0.67
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996 time dimension. 2) Armed with the Bayesian framework,
997 BTRTF ismore advantageous in separating foreground objects
998 especially for those with slow movement. It is worth noting
999 that Fountain01 consists of significant dynamic background

1000 elements such as intense water flow, while the foreground
1001 objects are relatively small. This makes foreground/back-
1002 ground separation much more challenging. As a result, all the
1003 methods fail to performwell on this video.

1004 4.3.2 Visual Quality

1005 To visualize the background modeling results, we select five
1006 videos from the I2R (Curtain, ShoppingMall, WaterSurface)
1007 and CDnet (Boats, Fall) datasets, and show the background

1008and foreground masks learned by different RPCA methods
1009in Fig. 3. It can be seen that only BTRTF obtains coherent
1010foreground masks while constructing clean background in
1011all the cases. Matrix-based methods (RPCA and VBRPCA)
1012can only obtain blurry background with severe ghosting
1013effects. This is because they have to first reshape the input
1014tensors into matrices and thus loss some structural informa-
1015tion. On the other hand, tensor-based methods, especially
1016TNN and BTRTF, obtain cleaner background with much
1017more details, showing the capability of t-SVD based models
1018in characterizing low-rank data information.
1019From (a) Curtain and (c) WaterSurface, all the methods
1020except BTRTF fail to separate the person, who walks through

Fig. 3. Detected background and foreground masks on five videos from the I2R and CDnet datasets. (a) Curtain, (b) ShoppingMall, (c) WaterSurface,
(d) Boats, (e) Fall. For each video, there are two rows corresponding to background and foreground masks. Blue and red regions in the learned
masks indicate false positives and false negatives, respectively.
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1021 the camera and stands for a while, from the background. This
1022 is also the case for (d) Boats and (e) Fall, where the boat moves
1023 slowly and the truck is too long to quickly pass through the
1024 camera. Because of the slow motion of these foreground
1025 objects, the competing methods tend to overfit the low-rank
1026 component (background), and thus lead to more false nega-
1027 tives (the red regions) in the foreground masks. In contrast,
1028 BTRTF not only completely separates the foreground objects
1029 in all the cases, but also has less false positives (the blue
1030 regions) by filtering out many dynamic textures, e.g., fluctua-
1031 tions ofwaves and swaying of leaves. From (b) ShoppingMall,
1032 we observe ghosting effects in the background learned by
1033 KDRSDL and TNN, although they obtains higher F-measure
1034 than BTRTF. BRTF removes not only all the person but also
1035 many details such as patterns on the floor from the back-
1036 ground. Only our BTRTF achieves good performance on both
1037 foreground detection and background construction.
1038 Based on the visual and quantitative results, we summa-
1039 rize that 1) the performance of matrix-based methods is not
1040 good enough in backgroundmodeling, since they cannot uti-
1041 lize the informative tensor structures. 2) By exploiting the
1042 correlations along the time dimension, the low-tubal-rank
1043 model can construct the backgroundwith higher quality and
1044 more details than the classical CP and Tucker models. 3)
1045 BTRTF is superior to the competing methods in dealing with
1046 dynamic background elements and slow objective move-
1047 ment. This can be attributed to both the more expressive
1048 modeling power of the low-tubal-rankmodel in representing
1049 the background and the Bayesian framework in implicitly
1050 balancing the low-rank and sparse components.

1051 5 CONCLUSION AND FUTURE WORK

1052 In this paper, we have proposed BTRTF, a fully Bayesian
1053 method for robust tensor factorization. By incorporating low-
1054 tubal-rank structures and a generalized ARD prior into the
1055 Bayesian framework, BTRTF featuresmore expressivemodel-
1056 ing power than classical Tucker and CP based approaches,
1057 automatic multi-rank determination, and implicit trade-off
1058 between the low-rank and sparse components. Formodel esti-
1059 mation, we have developed an efficient variational inference
1060 algorithmby updating themodel parameters in the frequency
1061 domain. Experiments on both synthetic and real-world data-
1062 sets demonstrated that BTRTF is effective in determining the
1063 multi-rank, and outperforms state-of-the-art RPCA methods
1064 in image denoising and backgroundmodeling.
1065 Since the t-product, tubal rank, and multi-rank are origi-
1066 nally defined on third-order tensors [18], we consider deal-
1067 ing with 3D data only in this work. Recently, there have been
1068 some attempts to generalize the t-product and t-SVD for
1069 higher-order tensors [25]. Along this line, wemay also define
1070 higher-order extensions of the tubal rank and multi-rank.
1071 With these definitions, the BTRTFmodel alongwith the vari-
1072 ational inference scheme can be naturally generalized for
1073 higher-order tensors, which could be the futurework.
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