Bayesian Low-Tubal-Rank Robust Tensor Factorization with Multi-Rank Determination

\square

Abstract

Robust tensor factorization is a fundamental problem in machine learning and computer vision, which aims at decomposing tensors into low-rank and sparse components. However, existing methods either suffer from limited modeling power in preserving lowrank structures, or have difficulties in determining the target tensor rank and the trade-off between the low-rank and sparse components. To address these problems, we propose a fully Bayesian treatment of robust tensor factorization along with a generalized sparsityinducing prior. By adapting the recently proposed low-tubal-rank model in a generative manner, our method is effective in preserving lowrank structures. Moreover, benefiting from the proposed prior and the Bayesian framework, the proposed method can automatically determine the tensor rank while inferring the trade-off between the low-rank and sparse components. For model estimation, we develop a variational inference algorithm, and further improve its efficiency by reformulating the variational updates in the frequency domain. Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of the proposed method in multi-rank determination as well as its superiority in image denoising and background modeling over state-of-the-art approaches.

Index Terms—Robust PCA, tensor factorization, tubal rank, multi-rank determination, Bayesian inference

1 Introduction

REAL-WORLD data such as images, videos, and social networks are often high-dimensional, while considered to be approximately low-rank or lie near a low-dimensional manifold. Finding and exploiting low-rank structures from high-dimensional data is a fundamental problem in many machine learning and computer vision applications, e.g., collaborative filtering [1], face recognition [2], and data mining [3]. Principal Component Analysis (PCA) [4] is a conventional method to seek the best (in the least-squares sense) low-rank representation of given data. It is effective in dealing with the data that is mildly corrupted with small noise, and can be stably computed via singular value decomposition (SVD).

However, PCA is very sensitive to outliers, and fails to perform well on data with gross corruptions. Unfortunately, the presence of outliers is ubiquitous in realworld applications such as data mining, image processing, and video surveillance. For instance, moving objects in a video taken by a stationary camera can be viewed as sparse outliers in the static background. To overcome the sensitivity of PCA to outliers, many robust variants of PCA have been proposed [5], [6], [7], [8]. Among

- Y. Zhou is with the Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, and also with the School of Computer Science and Software Engineering, East China Normal University, Shanghai 200062, P.R. China. E-mail: youngzhou12@gmail.com.
- Y.-M. Cheung is with the Department of Computer Science and Institute of Research and Continuing Education, Hong Kong Baptist University, Kowloon Tong, Hong Kong. E-mail: ymc@comp.hkbu.edu.hk.
Manuscript received 5 Oct. 2018; revised 6 June 2019; accepted 9 June 2019. Date of publication 0.0000 ; date of current version 0.0000 .
(Corresponding author: Yiu-Ming Cheung.)
Recommended for acceptance by C. Zhang.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TP AMI.2019.2923240
them, Robust PCA (RPCA) [6] is arguably the most pop- 37 ular method that enjoys both computational efficiency 38 and theoretical performance guarantees.

39
RPCA assumes that the observed matrix \mathbf{Y} can be repre- 40 sented as $\mathbf{Y}=\mathbf{X}_{0}+\mathbf{S}_{0}$, where \mathbf{X}_{0} is a low-rank matrix and $\mathbf{S}_{0} 41$ is a sparse matrix with only a small fraction of elements 42 being nonzero and arbitrary in magnitude. It has been 43 proved that, under some broad conditions, \boldsymbol{X}_{0} and \mathbf{S}_{0} can be 44 exactly recovered from \mathbf{Y} by solving the following convex 45 problem:

$$
\begin{equation*}
\min _{\mathbf{X}, \mathbf{S}}\|\mathbf{X}\|_{*}+\xi\|\mathbf{S}\|_{1} \text { s.t. } \quad \mathbf{Y}=\mathbf{X}+\mathbf{S} \tag{46}
\end{equation*}
$$

where $\|\cdot\|_{*}$ and $\|\cdot\|_{1}$ denote the nuclear norm and ℓ_{1} norm, 49 respectively, and $\xi>0$ is the hyper-parameter balancing 50 the low-rank and sparse terms. RPCA and its extensions 51 have many important applications, such as video denoising 52 [9], subspace clustering [10], and object detection [11], to 53 name a few.

One main limitation of RPCA is that it can only deal with 55 matrix data, while many real-world data are naturally orga- 56 nized as tensors (multidimensional arrays) [12], [13]. For 57 example, a color image is a third-order tensor of height $\times 58$ width \times channel, and a gray-level video can be represented 59 as height \times width \times time. When applying RPCA to tensorial 60 data, one has to first reshape the input tensor into a matrix, 61 which often leads to loss of structural information and 62 degraded performance. To address this problem, tensor 63 RPCA (TRPCA) and robust tensor factorization (RTF) meth- 64 ods have been proposed, which directly handle tensors for 65 exploiting their multidimensional structures.

66
Specifically, given a tensor $\mathcal{Y} \in \mathbb{R}^{I_{1} \times \cdots \times I_{N}}$, TRPCA and 67 RTF methods assume $\mathcal{Y}=\mathcal{X}_{0}+\mathcal{S}_{0}$ and seek to recover $\mathcal{X}_{0}{ }_{68}$ from \mathcal{Y}, where \mathcal{X}_{0} is a tensor with certain low-rank structure 69
and \mathcal{S}_{0} is sparse. Based on different low-rank models and the corresponding tensor rank definitions, there exist three popular frameworks for solving the TRPCA and RTF problems. They are based on the Tucker [14], CANDECOMP/ PARAFAC (CP) [15], [16], and low-tubal-rank models [17], [18], respectively.

The Tucker model assumes that the low-rank component \mathcal{X}_{0} can be well approximated as

$$
\begin{equation*}
\mathcal{X}_{\mathrm{tc}}=\mathcal{Z} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times_{3} \cdots \times_{N} \mathbf{U}^{(N)}, \tag{2}
\end{equation*}
$$

where \times_{n} denotes the mode- n tensor product, $\mathbf{U}^{(n)} \in \mathbb{R}^{I_{n} \times R_{n}}$ ($n=1, \ldots, N$) is the mode- n factor matrix, \mathcal{Z} is the core tensor capturing the correlations among $\left\{\mathbf{U}^{(n)}\right\}_{n=1}^{N}$. The Tucker (multilinear) rank [12] of \mathcal{Y} is defined as $\operatorname{Rank}_{\mathrm{tc}}(\mathcal{Y}) \equiv$ $\left(R_{1}, \ldots, R_{N}\right)$ with $R_{n}=\operatorname{Rank}\left(\mathbf{Y}_{(n)}\right)$, where $\mathbf{Y}_{(n)} \in \mathbb{R}^{I_{n} \times \prod_{m \neq n} I_{m}}$ is the mode- n unfolding matrix of \mathcal{Y}.

Most Tucker-based TRPCA methods [19], [20] are convex methods. They seek a low-Tucker-rank component by minimizing the Sum of Nuclear Norms (SNN) [21] of \mathcal{Y}, which is a convex surrogate of the Tucker rank. Some robust Tucker factorization methods [22], [23], [24] have also been proposed to perform TRPCA by explicitly fitting the Tucker model with a predetermined Tucker rank. By alternately solving a (nonconvex) least-squares problem, such RTF methods are generally more efficient and empirically perform better than convex TRPCA approaches, provided that the predetermined Tucker rank matches the input tensor. However, Tucker-based TRPCAs and RTFs require unfolding the input tensor for parameter estimation, and thus fail to fully exploit the correlations among different tensor dimension [19], [25].

The CP model decomposes \mathcal{X}_{0} into the sum of rank-one tensors as follows:

$$
\begin{equation*}
\mathcal{X}_{\mathrm{cp}}=\sum_{r=1}^{R} \mathbf{u}_{r}^{(1)} \circ \mathbf{u}_{r}^{(2)} \circ \cdots \circ \mathbf{u}_{r}^{(N)}, \tag{3}
\end{equation*}
$$

where \circ denotes the outer product, and $\mathbf{u}_{r}^{(n)} \in \mathbb{R}^{I_{n}}(n=1$, $\ldots, N ; r=1, \ldots, R$) is the r th mode- n factor. The CP rank of \mathcal{Y} is given by $\operatorname{Rank}_{\mathrm{cp}}(\mathcal{Y}) \equiv R$, defined as the smallest number of the rank-one tensor decomposition [12].

Since the CP rank is difficult to be determined (known as an NP-hard problem) and its convex relaxation is intractable [26], [27], existing CP-based TRPCA and RTF methods resort to the probabilistic framework to estimate the lowrank component and the CP rank. For example, Bayesian Robust Tensor Factorization (BRTF) [28] estimates the CP model in a fully Bayesian manner to recover tensors with both missing values and outliers. By introducing proper priors, it obtains robustness against overfitting and enables automatic CP rank determination. To handle complex noise and outliers, Generalized Weighted Low-Rank Tensor Factorization (GWLRTF) [29] represents the sparse component \mathcal{S} as a mixture of Gaussian, and unifies the Tucker and CP factorization in a joint framework. A key advantage of these probabilistic RTF methods over their non-probabilistic counterparts is that the trade-off between the low-rank and sparse components can be naturally optimized without manually tuning. Nevertheless, the CP model is usually considered as a special case of the Tucker model [12], and
may not have enough flexibility in representing tensors with complex low-rank structures.

Recently, Kilmer et al. [17] defined a multiplication opera- 128 tion between tensors, called tensor-tensor product (t-product), 129 and proposed tensor-SVD (t-SVD) associated with two new 130 tensor rank definitions, i.e., tubal rank and multi-rank [18] (see Section 2 for their formal definitions). The reduced version [30] of t-SVD for the low-rank component \mathcal{X}_{0} is given by

$$
\begin{equation*}
\mathcal{X}_{\mathrm{t}-\mathrm{SVD}}=\mathcal{U} * \mathcal{D} * \mathcal{V}^{\dagger} \tag{4}
\end{equation*}
$$

135
where $*$ denotes the t-product, $\mathcal{U} \in \mathbb{R}^{I_{1} \times R \times I_{3}}$ and $\mathcal{V} \in \mathbb{R}^{I_{2} \times R \times I_{3}}{ }_{136}$ are orthogonal tensors, and $\mathcal{D} \in \mathbb{R}^{R \times R \times I_{3}}$ is an f -diagonal ten- ${ }^{137}$ sor whose frontal slices are all diagonal matrices. The tubal 138 rank of \mathcal{X}_{0} is then defined by $\operatorname{Rank}_{\mathrm{t}}\left(\mathcal{X}_{0}\right) \equiv R$.

The development of t -SVD motivates the low-tubal-rank 140 model for representing tensors of low tubal rank, which has 14 been successfully applied to the tensor completion problem ${ }_{12}$ with the state-of-the-art performance achieved [31], [32], [33]. 143 Compared with the conventional Tucker and CP models, the 144 low-tubal-rank model has more expressive modeling power, 145 especially for characterizing tensors that have a fixed orienta- 146 tion or certain "spatial-shifting" properties, such as color 147 images, videos, and multi-channel audio sequences [17]. 148

Based on the low-tubal-rank model, Lu et al. [34], [35] 149 proposed to use the tensor nuclear norm (TNN) [31] as a 150 convex relaxation of the tubal rank, and perform TRPCA by 151 solving a convex problem similar to RPCA (1). They further 152 analyzed the theoretical guarantee for the exact recovery. 153 Outlier-Robust Tensor PCA (OR-TRPCA) combines TNN 154 with the $\ell_{2,1}$ norm to handle sample-specific corruptions, 155 which achieves promising results on outliers detection and 156 classification. However, similar to RPCA, these methods 157 also involve a hyper-parameter as in (1) for adjusting the 158 contributions of the low-rank and sparse components. For 159 good performance, this balancing parameter has to be care- 160 fully determined. If the low-rank component contributes 16 too much to the objective function, the outliers will not be 162 completely removed. On the other hand, if the sparse com- 163 ponent is dominant, the recovered tensor will lose many 164 details and cannot fully preserve the low-rank structures. 16 Since the trade-off between the low-rank and sparse components should be adjusted according to both the input data and tasks, finding an appropriate value for the balancing parameter is generally difficult and time consuming in practice.

Besides TNN, low-tubal-rank structures can also be introduced by explicitly factorizing a given tensor as the t-product of two smaller tensors [30], [33]. Such low-tubal-rank tensor factorization methods are more efficient and expected to obtain better recovery performance than TNN-based methods. However, in addition to the balancing parameter, they also need to know the target tubal rank in advance. Both over- and under-estimation of the tubal rank will lead to the degraded performance. Although a heuristic rank-decreasing strategy has been proposed in [33], the study on how to dis- 180 cover the underlying tubal rank and multi-rank of a given 18 tensor is still very desirable.

Can we make use of the low-tubal-rank model for RTF without 183 suffering from the difficulties in determining the tubal rank and 184 the balancing parameter? In this paper, we solve this problem ${ }^{18}$

TABLE 1
Convention of Notations

Notation	Description
$\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$	the $I_{1} \times I_{2} \times I_{3}$ tensor
$\overline{\mathcal{X}}$	the DFT of \mathcal{X} along the third-dimension
$\overrightarrow{\mathcal{X}}_{i .} \in \mathbb{R}^{1 \times I_{2} \times I_{3}}$	the i th horizontal slice of \mathcal{X}
$\overrightarrow{\mathcal{X}}_{. j} \in \mathbb{R}^{I_{1} \times 1 \times I_{3}}$	the j th lateral slice of \mathcal{X}
$\mathbf{X}^{(k)} \in \mathbb{R}^{I_{1} \times I_{2}}$	the k th frontal slice of \mathcal{X}
$\operatorname{circ}(\mathcal{X}) \in \mathbb{R}^{I_{1} I_{3} \times I_{2} I_{3}}$	the block circulant matrix of \mathcal{X}
$\operatorname{unfold}(\mathcal{X}) \in \mathbb{R}^{I_{1} I_{3} \times I_{2}}$	the unfolded matrix of \mathcal{X}
$\mathcal{X}^{\dagger} \in \mathbb{R}^{I_{2} \times I_{1} \times I_{3}}$	the conjugate transpose of \mathcal{X}
$\mathbf{x}_{i j} \in \mathbb{R}^{I_{3}}$	the (i, j) th tube of \mathcal{X}
$\overrightarrow{\mathbf{x}}_{i .}=\operatorname{unfold}\left(\overrightarrow{\mathcal{X}}_{i .}^{\dagger}\right) \in \mathbb{R}^{I_{2} I_{3}}$	the vector formed by unfolding $\overrightarrow{\mathcal{X}}_{i .}^{\dagger}$
$\overrightarrow{\mathbf{x}}_{\cdot j}=\operatorname{unfold}\left(\overrightarrow{\mathcal{X}}_{\cdot j}\right) \in \mathbb{R}^{I_{1} I_{3}}$	the vector formed by unfolding $\overrightarrow{\mathcal{X}}_{\cdot j}$
$*$	the t-product
\circ	the outer product
\otimes	the Kronecker product

by introducing low-tubal-rank structures into the Bayesian framework, and propose a fully Bayesian treatment of RTF for third-order tensors, named as Bayesian low-Tubal-rank Robust Tensor Factorization (BTRTF). To the best of our knowledge, this is the first probabilistic/Bayesian method for low-tubal-rank tensor factorization.

BTRTF equips the low-tubal-rank model with automatic rank determination, and enables implicit trade-off between the low-rank and sparse components via maximizing the (approximated) posterior probability. In addition, it is well known that the Bayesian framework offers unique advantages in capturing data uncertainty, reducing risk of overfitting, handling missing values, and introducing prior knowledge. These benefits also motivate the development of our BTRTF method. In summary, our contribution is three-fold:

1) We propose a generative model for recovering low-tubal-rank tensors from observations corrupted by both sparse outliers of arbitrary magnitude and dense noise of small magnitude, where the observed tensor is factorized into the t-product of two smaller factor tensors.
2) We consider automatic rank determination for not only the tubal rank but also the multi-rank, which is a more general and challenging problem. To this end, we propose a generalization of the ARD prior [36]. By incorporating this prior into the Bayesian framework, unnecessary low-rank components can be adaptively removed in the frequency domain, leading to automatic multi-rank determination.
3) Since exact inference of the proposed generative model is analytically intractable, we develop an efficient model estimation scheme via variational approximation. By updating the model parameters in the frequency domain instead of the original one, the computational cost of each iteration is greatly reduced from $O\left(R^{3} I_{3}^{3}+R I_{1} I_{2} I_{3}^{2}\right)$ to $O\left(R^{3} I_{3}+R I_{1} I_{2} I_{3}\right)$, when handling a $I_{1} \times I_{2} \times I_{3}$ tensor with its tubal rank being R.

2 Preliminaries

This section introduces notations, definitions, and opera- 226 tions used in this paper.

2.1 Notations

We denote vectors, matrices, and tensors by bold lowercase, 229 bold uppercase, and calligraphic letters (\mathbf{x}, \mathbf{X}, and \mathcal{X}), 230 respectively. \mathbb{R} and \mathbb{C} denote the fields of real numbers and 231 complex numbers, respectively. $\langle\cdot\rangle$ denotes the expectation 232 of a certain random variable, $\operatorname{tr}(\cdot)$ denotes the matrix trace, 233 and \mathbf{I}_{I} denotes the $I \times I$ identity matrix. For a vector $\mathbf{x}, 234$ $\operatorname{diag}(\mathbf{x})$ is the diagonal matrix formed by \mathbf{x}. For a third-order 235 tensor $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$, we use the matlab notations to denote 236 the i th horizontal, j th lateral, and k th frontal slices of \mathcal{X} by 237 $\overrightarrow{\mathcal{X}}_{i}=\mathcal{X}(i,:,:), \overrightarrow{\mathcal{X}}_{. j}=\mathcal{X}(:, j,:)$, and $\mathbf{X}^{(k)}=\mathcal{X}(:,:, k)$, respec- 238 tively. $\mathbf{x}_{i j}=\mathcal{X}(i, j,:)$ denotes the (i, j) th tube of \mathcal{X}. The con- 239 jugate transpose and the Frobenius norm of \mathcal{X} are denoted 240 as \mathcal{X}^{\dagger} and $\|\mathcal{X}\|_{F}$, respectively. $\operatorname{cir}(\mathcal{X}) \in \mathbb{R}^{I_{1} I_{3} \times I_{2} I_{3}}$ is the block 241 circulant matrix of $\mathcal{X}, \operatorname{unfold}(\mathcal{X}) \in \mathbb{R}^{I_{1} I_{3} \times I_{2}}$ is the unfolded 242 matrix of $\mathcal{X}, \overrightarrow{\mathbf{x}}_{i} . \in \mathbb{R}^{I_{2} I_{3}}$ is the unfolded vector of $\overrightarrow{\mathcal{X}}_{i}^{\dagger}$. with 243 $\overrightarrow{\mathbf{x}}_{i .}=\operatorname{unfold}\left(\overrightarrow{\mathcal{X}}_{i .}^{\dagger}\right)$, and $\overrightarrow{\mathbf{x}}_{\cdot j} \in \mathbb{R}^{I_{1} I_{3}}$ is the unfolded vector of 244 $\overrightarrow{\mathcal{X}}_{. j}$ with $\overrightarrow{\mathbf{x}}_{\cdot j}=\operatorname{unfold}\left(\overrightarrow{\mathcal{X}}_{\cdot j}\right)$. Table 1 summarizes the nota- 245 tions used in this paper.

2.2 Discrete Fourier Transformation

This subsection introduces Discrete Fourier Transformation 248 (DFT), which plays a key role in the t-product algebraic 249 framework and our BTRTF method. Let $\overline{\mathbf{x}}=\mathbf{F}_{I} \mathbf{x}$ be the DFT 250 of $\mathbf{x} \in \mathbb{R}^{I} . \mathbf{F}_{I} \in \mathbb{C}^{I \times I}$ is the DFT matrix defined as

$$
\mathbf{F}_{I}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \tag{5}\\
1 & \omega & \omega^{2} & \cdots & \omega^{I-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{I-1} & \omega^{2(I-1)} & \cdots & \omega^{(I-1)(I-1)}
\end{array}\right]
$$

where $\omega=\exp \left(-\frac{2 \pi \mathrm{i}}{I}\right)$ and $\mathrm{i}=\sqrt{-1}$ is the imaginary unit. Let 254 $\overline{\mathcal{X}}$ be the DFT of $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$ along the third dimension, 255 whose (i, j) th tube is given by $\overline{\mathbf{x}}_{i j}=\overline{\mathcal{X}}(i, j,:)=\mathbf{F}_{I_{3}} \mathcal{X}(i, j,:)$. Using the matlab commands, we have $\overline{\mathcal{X}}=\operatorname{fft}(\mathcal{X},[], 3)$ and $\mathcal{X}=\operatorname{ifft}(\overline{\mathcal{X}},[], 3)$ by applying (inverse) Fast Fourier Transform (FFT).

Let $\overline{\mathbf{X}} \in \mathbb{C}^{I_{1} I_{3} \times I_{2} I_{3}}$ be the block diagonal matrix whose k th 256 diagonal block is given by the k th frontal slice $\overline{\mathbf{X}}^{(k)}$ of $\overline{\mathcal{X}}, 257$ that is

$$
\overline{\mathbf{X}}=\operatorname{bdiag}(\overline{\mathcal{X}})=\left[\begin{array}{llll}
\overline{\mathbf{X}}^{(1)} & & & \tag{6}\\
& \overline{\mathbf{X}}^{(2)} & & \\
& & \ddots & \\
& & & \overline{\mathbf{X}}^{\left(I_{3}\right)}
\end{array}\right]
$$

where $\operatorname{bdiag}(\cdot)$ is the operator that transforms $\overline{\mathcal{X}}$ to $\overline{\mathbf{X}}$. We 261 then define $\operatorname{circ}(\mathcal{X}) \in \mathbb{R}^{I_{1} I_{3} \times I_{2} I_{3}}$ as the block circulant matrix 262 of \mathcal{X} as follows:

$$
\operatorname{circ}(\mathcal{X})=\left[\begin{array}{cccc}
\mathbf{X}^{(1)} & \mathbf{X}^{\left(I_{3}\right)} & \ldots & \mathbf{X}^{(2)} \tag{7}\\
\mathbf{X}^{(2)} & \mathbf{X}^{(1)} & \ldots & \mathbf{X}^{(3)} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{X}^{\left(I_{3}\right)} & \mathbf{X}^{\left(I_{3}-1\right)} & \cdots & \mathbf{X}^{(1)}
\end{array}\right]
$$

It is well known that block circulant matrices can be block diagonalized by DFT, i.e.,

$$
\begin{equation*}
\left(\mathbf{F}_{I_{3}} \otimes \mathbf{I}_{I_{1}}\right) \operatorname{circ}(\mathcal{X})\left(\mathbf{F}_{I_{3}}^{-1} \otimes \mathbf{I}_{I_{2}}\right)=\overline{\mathbf{X}} \tag{8}
\end{equation*}
$$

where \otimes denotes the Kronecker product. The above operators and properties will be frequently used in this paper.

2.3 T-Product and T-SVD

This subsection introduces the t-product and its associated algebraic framework [18], which lay the foundation of our BTRTF. Let unfold (\cdot) and fold (\cdot) be the unfold operator and its inverse operator, respectively. For a third-order tensor $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}, \operatorname{unfold}(\mathcal{X})$ is the $I_{1} I_{3} \times I_{2}$ matrix formed by the frontal slices of \mathcal{X}, leading to

$$
\operatorname{unfold}(\mathcal{X})=\left[\mathbf{X}^{(1)} ; \ldots ; \mathbf{X}^{\left(I_{3}\right)}\right], \text { fold }(\operatorname{unfold}(\mathcal{X}))=\mathcal{X}
$$

Definition 2.1 (T-product [18]). Given $\mathcal{X} \in \mathbb{R}^{I_{1} \times R \times I_{3}}$ and $\mathcal{Y} \in \mathbb{R}^{R \times I_{2} \times I_{3}}$, the t-product $\mathcal{X} * \mathcal{Y}$ is the $I_{1} \times I_{2} \times I_{3}$ tensor

$$
\begin{equation*}
\mathcal{Z}=\mathcal{X} * \mathcal{Y}=\operatorname{fold}(\operatorname{circ}(\mathcal{X}) \operatorname{fold}(\mathcal{Y})) \tag{9}
\end{equation*}
$$

The computation of t-product can also be viewed in a tube-wise way

$$
\begin{equation*}
\mathbf{z}_{i j}=\mathcal{Z}(i, j,:)=\sum_{r=1}^{R} \mathbf{x}_{i r} * \mathbf{y}_{r j} \tag{10}
\end{equation*}
$$

where $\mathbf{x}_{i r}$ is the (i, r) th tube of $\mathcal{X}, \mathbf{y}_{r j}$ is the (r, j) th tube of \mathcal{Y}, and $*$ reduces to circular convolution between two tubes of the same size. If we consider the tube $\mathbf{z}_{i j} \in \mathbb{R}^{I_{3}}$ as an "elementary" component, the third-order tensor $\mathcal{Z} \in$ $\mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$ is just a $I_{1} \times I_{2}$ matrix of length- I_{3} tubal scalars. From this perspective, the t-product is analogous to the standard matrix multiplication in the sense that the circular convolution of tubes replaces the product of elements.

Remarks. It is also worth noting that when $I_{3}=1$ the t product reduces to the matrix multiplication. Moreover, the t-product can be viewed as the matrix multiplication in the Fourier domain, since $\mathcal{Z}=\mathcal{X} * \mathcal{Y}$ is equivalent to $\overline{\mathbf{Z}}=\overline{\mathbf{X}} \mathbf{Y}$ because of (8). This is a key property which provides an efficient way of computing the t-product and greatly facilitates the model estimation of our BTRTF method shown later. In what follows, we further review some definitions related to the t-product.

Definition 2.2 (Identity tensor [17]). The identity tensor $\mathcal{I} \in \mathbb{R}^{I \times I \times I_{3}}$ is defined as the tensor whose first frontal slice is the $I \times I$ identity matrix, and other slices are all zeros.

The identity tensor with appropriate sizes satisfies $\mathcal{X} * \mathcal{I}$ and $\mathcal{I} * \mathcal{X}$. The DFT of $\mathcal{I}, \overline{\mathcal{I}}=\operatorname{fft}(\mathcal{I},[], 3)$, is the tensor with each frontal slice being the identity matrix.
Definition 2.3 (F-diagonal tensor [17]). A tensor is called f-diagonal if its frontal slices are all diagonal matrices.

Definition 2.4 (Conjugate transpose [17]). The conjugate

 transpose of a tensor is defined as the tensor $\mathcal{X}^{\dagger} \in \mathbb{R}^{I_{2} \times I_{1} \times I_{3}}$ constructed by conjugate transposing each frontal slice of $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$ and then reversing the order of the transposed frontal slices 2 through I_{3}.Definition 2.5 (Orthogonal tensor [17]). A tensor 321 $\mathcal{Q} \in \mathbb{Q}^{I \times I \times I_{3}}$ is called orthogonal, provided that $\mathcal{Q}^{\dagger} * \mathcal{Q}=\mathcal{Q} * 322$ $\mathcal{Q}^{\dagger}=\mathcal{I}$ with \mathcal{I} being an $I \times I \times I_{3}$ identity tensor.
Definition 2.6 (T-SVD [17]). Let \mathcal{X} be an $I_{1} \times I_{2} \times I_{3}$ real- 324 valued tensor. Then \mathcal{X} can be factored as

$$
\begin{equation*}
\mathcal{X}=\mathcal{U} * \mathcal{D} * \mathcal{V}^{\dagger} \tag{11}
\end{equation*}
$$

where $\mathcal{U} \in \mathbb{R}^{I_{1} \times I_{1} \times I_{3}}, \mathcal{V} \in \mathbb{R}^{I_{2} \times I_{2} \times I_{3}}$ are orthogonal tensors, 328 and $\mathcal{D} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$ is an f-diagonal tensor. The factorization 329 (11) is called the $t-S V D$ (i.e., tensor SVD).

The t-SVD provides a way to factorizing any third-order 331 tensor into two orthogonal tensors and a f-diagonal tensor. 332 When the third dimension $I_{3}=1$, it reduces to the classical 333 matrix SVD.

Definition 2.7 (Tensor tubal rank and multi-rank [18]). 335 The multi-rank of a third-order tensor $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$ is a 336 length $-I_{3}$ vector defined as

$$
\operatorname{Rank}_{\mathrm{m}}(\mathcal{X})=\left(\operatorname{Rank}\left(\overline{\mathbf{X}}^{(1)}\right), \ldots, \operatorname{Rank}\left(\overline{\mathbf{X}}^{\left(I_{3}\right)}\right)\right)
$$

where $\overline{\mathbf{X}}^{(k)}$ is the kth frontal slice of $\overline{\mathcal{X}}=\operatorname{fft}(\mathcal{X},[], 3)$ and 340 $\operatorname{Rank}\left(\overline{\mathbf{X}}^{(k)}\right)$ is the rank of $\overline{\mathbf{X}}^{(k)}$. The tubal rank of \mathcal{X} is the num- 341 ber of nonzero tubes of \mathcal{D} from the t-SVD of $\mathcal{X}=\mathcal{U} * \mathcal{D} * \mathcal{V}^{\dagger}$, 342 i.e.,

$$
\operatorname{Rank}_{\mathrm{t}}(\mathcal{X})=\#\{i, \mathcal{D}(i, i,:) \neq \mathbf{0}\}=\max _{k} \operatorname{Rank}\left(\overline{\mathbf{X}}^{(k)}\right)
$$

Lemma 1 (Best rank- R approximation [17], [18]). Let 347 $\mathcal{X}=\mathcal{U} * \mathcal{D} * \mathcal{V}^{\dagger}$ be the t-SVD of $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$. Then given 348 tubal rank $R<\min \left(I_{1}, I_{2}\right)$

$$
\begin{aligned}
\mathcal{X}_{R} & =\underset{\hat{\mathcal{X}} \in \mathbb{M}}{\arg \min \|\mathcal{X}-\hat{\mathcal{X}}\|_{F}} \\
& =\sum_{r=1}^{R} \mathcal{U}(:, r,:) * \mathcal{D}(r, r,:) * \mathcal{V}(:, r,:)^{\dagger},
\end{aligned}
$$

is the best approximation of \mathcal{X} with the tubal rank at most $R,{ }_{352}$ where $\mathbb{M}=\left\{\mathcal{C}=\mathcal{A} * \mathcal{B}^{\dagger} \mid \mathcal{A} \in \mathbb{R}^{I_{1} \times R \times I_{3}}, \mathcal{B} \in \mathbb{R}^{I_{2} \times R \times I_{3}}\right\}$.

3 Bayesian Low-Tubal-Rank Robust Tensor FACtORIZATION

This section presents our BTRTF method in three steps. We 356 first provide the detailed Bayesian model specification for 357 BTRTF, and employ the Automatic Relevance Determina- 358 tion (ARD) prior [36] for tubal rank determination. Then we 359 develop a variational inference method for model estima- 360 tion, and further improve its efficiency by using the proper- 361 ties of the t-product and reformulating the variational 362 updates in the frequency domain. Finally, a generalization 363 of the ARD prior is proposed and incorporated into the 364 BTRTF model to automatically determine both the tubal 365 rank and multi-rank.

3.1 Model Specification

We assume that the observed tensor $\mathcal{Y} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$ can be 368 decomposed into three parts: the low-rank component \mathcal{X}, 369 the sparse component \mathcal{S}, and the noise term \mathcal{E}, i.e.,

Fig. 1. Graphical illustration of the BTRTF model.

$$
\begin{equation*}
\mathcal{Y}=\mathcal{X}+\mathcal{S}+\mathcal{E} \tag{12}
\end{equation*}
$$

where each element of \mathcal{E} is assumed to be i.i.d Gaussian, leading to $\mathcal{E} \sim \prod_{i j k} \mathcal{N}\left(E_{i j k} \mid 0, \tau^{-1}\right)$ with the noise precision τ. Given \mathcal{Y}, our goal is to recover \mathcal{X} and \mathcal{S}. Different from most existing works pursuit \mathcal{X} of low Tucker or CP rank, we preserve the low-tubal-rank structure of \mathcal{X} by factorizing it as a t-product of two smaller factor tensors

$$
\begin{equation*}
\mathcal{X}=\mathcal{U} * \mathcal{V}^{\dagger} \tag{13}
\end{equation*}
$$

where $\mathcal{U} \in \mathbb{R}^{I_{1} \times R \times I_{3}}, \mathcal{V} \in \mathbb{R}^{I_{1} \times R \times I_{3}}$, and $R \leq \min \left(I_{1}, I_{2}\right)$ controls the tubal-rank. According to Lemma 1, any tensor with a tubal rank up to R can be factorized as (13) for some \mathcal{U} and \mathcal{V} satisfying $\operatorname{Rank}_{\mathrm{t}}(\mathcal{U})=\operatorname{Ran}_{\mathrm{t}}(\mathcal{V})=R$ [30], [33]. This means that the low-tubal-rank model (13) is flexible enough to provide good approximation for tensors of low tubal rank.

Conditional Distribution. Based on the above low-tubal-rank factorization, we can obtain the conditional distribution of the observed tensor \mathcal{Y} given the model parameters, which is factorized over each tube of \mathcal{Y} as follows:

$$
\begin{equation*}
p(\mathcal{Y} \mid \mathcal{U}, \mathcal{V}, \mathcal{S}, \tau)=\prod_{i j} \mathcal{N}\left(\mathbf{y}_{i j} \mid \overrightarrow{\mathcal{U}}_{i} \cdot * \overrightarrow{\mathcal{V}}_{j}^{\dagger}+\mathbf{s}_{i j}, \tau^{-1} \mathbf{I}_{I_{3}}\right) \tag{14}
\end{equation*}
$$

Sparse Component. We model the sparse component \mathcal{S} by placing independent Gaussian priors over each element of \mathcal{S}, that is

$$
\begin{equation*}
p(\mathcal{S} \mid \boldsymbol{\beta})=\prod_{i j k} \mathcal{N}\left(S_{i j k} \mid 0, \beta_{i j k}^{-1}\right), \tag{15}
\end{equation*}
$$

where $\beta=\left\{\beta_{i j k}\right\}$ and $\beta_{i j k}$ is the precision of the Gaussian distribution for the (i, j, k) th element $S_{i j k}$. We further place independent Gamma priors for each $\beta_{i j k}$ and obtain

$$
\begin{equation*}
p(\boldsymbol{\beta})=\prod_{i j k} \mathrm{Ga}\left(\beta_{i j k} \mid a_{0}^{\beta}, b_{0}^{\beta}\right), \tag{16}
\end{equation*}
$$

where a_{0}^{β} and b_{0}^{β} are the hyper-parameters, and $\operatorname{Ga}(x \mid a, b)=$ $\frac{b^{a} x^{a-1} e^{-b x}}{\Gamma(a)}$ with $\Gamma(a)$ being the Gamma function. Note that as $\beta_{i j k}$ becomes large, the corresponding $S_{i j k}$ tends to be zero. By encouraging most precision variables to take large values, we can obtain a sparse \mathcal{S} for characterizing outliers.

ARD Prior. For now, we only consider tubal rank determination, while the results below will be generalized for multi-rank determination in Section 3.4. Since the tubal rank of \mathcal{X} is bounded by R, our aim is to introduce lateralslice sparsity into \mathcal{U} and \mathcal{V}, so that the minimum R can be
found by removing unnecessary lateral slices from \mathcal{U} and $\mathcal{V} .411$ To this end, we place the ARD prior [36] over the factor ten- 412 sors as follows:

$$
\begin{align*}
p(\mathcal{U} \mid \lambda) & =\prod_{i=1}^{I_{1}} \prod_{r=1}^{R} \mathcal{N}\left(\mathbf{u}_{i r} \mid \mathbf{0}, \lambda_{r}^{-1} \mathbf{I}_{I_{3}}\right) \\
& =\prod_{i=1}^{I_{1}} \mathcal{N}\left(\overrightarrow{\mathbf{u}}_{i} \cdot \mid \mathbf{0}, \operatorname{circ}(\Lambda)^{-1}\right) \tag{17}\\
p(\mathcal{V} \mid \boldsymbol{\lambda}) & =\prod_{j=1}^{I_{2}} \prod_{r=1}^{R} \mathcal{N}\left(\mathbf{v}_{j r} \mid \mathbf{0}, \lambda_{r}^{-1} \mathbf{I}_{I_{3}}\right) \\
& =\prod_{j=1}^{I_{2}} \mathcal{N}\left(\overrightarrow{\mathbf{v}}_{j \cdot \mid} \mid \mathbf{0}, \operatorname{circ}(\Lambda)^{-1}\right), \tag{18}\\
p(\boldsymbol{\lambda}) & =\prod_{r=1}^{R} \operatorname{Ga}\left(\lambda_{r} \mid a_{0}^{\lambda}, b_{0}^{\lambda}\right), \tag{19}
\end{align*}
$$

[^0]where $\mathbf{u}_{i r} \in \mathbb{R}^{I_{3}}$ is the (i, r) th tube of $\mathcal{U}, \mathbf{v}_{j r} \in \mathbb{R}^{I_{3}}$ is the ${ }_{422}$ (j, r) th tube of $\mathcal{V}, \overrightarrow{\mathbf{u}}_{i} . \in \mathbb{R}^{I_{1} I_{3}}=\operatorname{unfold}\left(\overrightarrow{\mathcal{U}}_{i}^{\dagger}\right), \overrightarrow{\mathbf{v}}_{j} . \in \mathbb{R}^{I_{2} I_{3}}={ }_{423}$ $\operatorname{unfold}\left(\overrightarrow{\mathcal{V}}_{j}^{\dagger}\right), \lambda=\left[\lambda_{1}, \ldots, \lambda_{R}\right]$, and λ_{r} is the hyper-parameter 424 that controls the r th lateral slices of \mathcal{U} and $\mathcal{V} . \Lambda$ is the $R \times R \times I_{3}$ tensor whose first frontal slice is the diagonal matrix $\Lambda^{(1)}=\operatorname{diag}(\lambda)$ and other slices are all zeros. $\operatorname{circ}(\Lambda)$ is just a diagonal matrix formed by the repeated block $\Lambda^{(1)}$. a_{0}^{λ} and b_{0}^{λ} are the hyper-parameters of λ. With the above priors, some elements of λ tend to have large values, which in turn pushes the corresponding lateral slices $\left(\overrightarrow{\mathcal{U}}_{. r}\right.$ and $\left.\overrightarrow{\mathcal{V}}_{. r}\right)$ towards zero. This yields the minimum number of lateral slices required for the low-tubal-rank factorization of \mathcal{Y}, and thus determines the tubal rank.

Noise Precision. To complete our fully Bayesian treatment, 425 a conjugate Gamma prior is placed over the noise precision 426 τ, leading to

$$
\begin{equation*}
p(\tau)=\operatorname{Ga}\left(\tau \mid a_{0}^{\tau}, b_{0}^{\tau}\right), \tag{20}
\end{equation*}
$$

[^1]where a_{0}^{τ} and b_{0}^{τ} are commonly set to small values for intro- 430 ducing broad and noninformative priors. 431

Joint Distribution. Based on the above model specification, 432 we can obtain the joint distribution via $p(\mathcal{Y}, \boldsymbol{\Theta})=p(\mathcal{Y} \mid \mathcal{U}, 433$ $\mathcal{V}, \mathcal{S}, \tau) p(\mathcal{U} \mid \boldsymbol{\lambda}) p(\mathcal{V} \mid \boldsymbol{\lambda}) p(\mathcal{S} \mid \boldsymbol{\beta}) p(\boldsymbol{\lambda}) p(\boldsymbol{\beta}) p(\tau)$, where $\boldsymbol{\Theta}=\{\mathcal{U}, \mathcal{V}, \boldsymbol{\lambda}$, 434 $\mathcal{S}, \beta, \tau\}$ is the collection of all the latent variables in the 435 BRTRF model. Fig. 1 shows the graphical model for BTRTF, 436 and the logarithm of $p(\mathcal{D}, \boldsymbol{\Theta})$ is given by 437

$$
\begin{align*}
\ln p(\mathcal{Y}, \boldsymbol{\Theta})= & -\frac{1}{2} \sum_{i j}\left[\tau| | \mathbf{y}_{i j}-\overrightarrow{\mathcal{U}}_{i \cdot} * \overrightarrow{\mathcal{V}}_{j \cdot}^{\dagger}-\mathbf{s}_{i j} \|^{2}-I_{3} \ln \tau\right] \\
& -\frac{1}{2}\left[\sum_{i=1}^{I_{1}} \operatorname{tr}\left(\overrightarrow{\mathbf{u}}_{i \cdot}^{\top} \cdot \operatorname{circ}(\Lambda) \overrightarrow{\mathbf{u}}_{i \cdot}\right)-\ln |\operatorname{circ}(\Lambda)|\right] \\
& -\frac{1}{2}\left[\sum_{j=1}^{I_{2}} \operatorname{tr}\left(\overrightarrow{\mathbf{v}}_{j \cdot}^{\top} \cdot \operatorname{circ}(\Lambda) \overrightarrow{\mathbf{v}}_{j \cdot} \cdot\right)-\ln |\operatorname{circ}(\Lambda)|\right] \tag{21}\\
& +\sum_{r, k}\left[\left(a_{0}^{\lambda}-1\right) \ln \lambda_{r}^{(k)}-b_{0}^{\lambda} \lambda_{r}^{(k)}\right] \\
& -\frac{1}{2} \sum_{i j k}\left(\beta_{i j k} S_{i j k}^{2}-\ln \beta_{i j k}\right) \\
& +\left(a_{0}^{\tau}-1\right) \ln \tau-b_{0}^{\tau} \tau+\mathrm{const} .
\end{align*}
$$

3.2 Variational Inference

Armed with the above results, the BTRTF model can be learned by estimating the posterior distribution $p(\boldsymbol{\Theta} \mid \mathcal{Y})=$ $\frac{p(\mathcal{Y}, \boldsymbol{\Theta})}{\int p(\mathcal{Y}, \boldsymbol{\Theta}) d \boldsymbol{\Theta}}$. Since $p(\boldsymbol{\Theta} \mid \mathcal{Y})$ is generally intractable, we apply variational inference methods [37], [38] for the model estimation. Specifically, we seek a variational distribution $q(\boldsymbol{\Theta})$ to approximate the true posterior by minimizing the KL divergence $\operatorname{KL}(q(\boldsymbol{\Theta}) \| p(\boldsymbol{\Theta} \mid \mathcal{Y}))=\ln p(\mathcal{Y})-\mathcal{L}(q)$, or equivalently maximizing the variational lower bound $\mathcal{L}(q)=\int q(\boldsymbol{\Theta})$ $\ln \left\{\frac{p(\mathcal{Y}, \boldsymbol{\Theta})}{q(\boldsymbol{\Theta})}\right\} d \boldsymbol{\Theta}$.

For tractable inference, we use the mean field approximation, and assume that $q(\boldsymbol{\Theta})$ can be factorized as

$$
\begin{equation*}
q(\boldsymbol{\Theta})=q(\mathcal{U}) q(\mathcal{V}) q(\mathcal{S}) q(\boldsymbol{\lambda}) q(\boldsymbol{\beta}) q(\tau) . \tag{22}
\end{equation*}
$$

Then, the optimal distribution of the j th variable set in terms of $\max _{q_{j}\left(\boldsymbol{\Theta}_{j}\right)} \mathcal{L}(q)$ takes the following form:

$$
\begin{equation*}
\ln q_{j}\left(\boldsymbol{\Theta}_{j}\right) \propto\langle\ln p(\mathcal{Y}, \boldsymbol{\Theta})\rangle_{\boldsymbol{\Theta} \backslash \boldsymbol{\Theta}_{j}}, \tag{23}
\end{equation*}
$$

where $\langle\cdot\rangle_{\boldsymbol{\Theta} \backslash \boldsymbol{\Theta}_{j}}$ denotes the expectation w.r.t. the variational distributions of all the latent variables in $\boldsymbol{\Theta}$ except $\boldsymbol{\Theta}_{j}$. By applying the explicit form (23) to the joint distribution (21), we can obtain closed-form solutions for the variational posterior of each variable set $\boldsymbol{\Theta}_{j}$.

Inference for \mathcal{U} and \mathcal{V}. With $\boldsymbol{\Theta}_{j}=\mathcal{U}$, the posterior $q(\mathcal{U})$ can be obtained as

$$
\begin{equation*}
\left.q(\mathcal{U})=\prod_{i=1}^{I_{1}} \mathcal{N}\left(\overrightarrow{\mathbf{u}}_{i \cdot}\right) \mid\left\langle\overrightarrow{\mathbf{u}}_{i \cdot}\right\rangle, \Sigma^{u}\right) \tag{24}
\end{equation*}
$$

whose parameters are given by

$$
\begin{gather*}
\left\langle\overrightarrow{\mathbf{u}}_{i \cdot}\right\rangle=\langle\tau\rangle \boldsymbol{\Sigma}^{u} \operatorname{circ}(\langle\mathcal{V}\rangle)^{\top}\left(\overrightarrow{\mathbf{y}}_{i \cdot}-\left\langle\overrightarrow{\mathbf{s}}_{i \cdot} \cdot\right\rangle\right), \tag{25}\\
\boldsymbol{\Sigma}^{u}=\left(\langle\tau\rangle\left\langle\operatorname{circ}(\mathcal{V})^{\top} \operatorname{circ}(\mathcal{V})\right\rangle+\operatorname{circ}(\langle\Lambda\rangle)\right)^{-1} . \tag{26}
\end{gather*}
$$

Similarly, the posterior distribution of \mathcal{V} is given by

$$
\begin{equation*}
\left.q(\mathcal{V})=\prod_{j=1}^{I_{2}} \mathcal{N}\left(\overrightarrow{\mathbf{v}}_{j \cdot}\right) \mid\left\langle\overrightarrow{\mathbf{v}}_{j \cdot}\right\rangle, \boldsymbol{\Sigma}^{v}\right) \tag{27}
\end{equation*}
$$

with the mean and covariance

$$
\begin{gather*}
\left\langle\overrightarrow{\mathbf{v}}_{j \cdot}\right\rangle=\langle\tau\rangle \boldsymbol{\Sigma}^{v} \operatorname{circ}(\langle\mathcal{U}\rangle)^{\top}\left(\overrightarrow{\mathbf{y}}_{\cdot j}-\left\langle\overrightarrow{\mathbf{s}}_{\cdot j}\right\rangle\right), \tag{28}\\
\boldsymbol{\Sigma}^{v}=\left(\langle\tau\rangle\left\langle\operatorname{circ}(\mathcal{U})^{\top} \operatorname{circ}(\mathcal{U})\right\rangle+\operatorname{circ}(\langle\Lambda\rangle)\right)^{-1} . \tag{29}
\end{gather*}
$$

The expectations $\left\langle\operatorname{circ}(\mathcal{U})^{\top} \operatorname{circ}(\mathcal{U})\right\rangle$ and $\left\langle\operatorname{circ}(\mathcal{V})^{\top} \operatorname{circ}(\mathcal{V})\right\rangle$ can be computed as follows:

$$
\begin{align*}
& \left\langle\operatorname{circ}(\mathcal{U})^{\top} \operatorname{circ}(\mathcal{U})\right\rangle=I_{3} \Sigma^{u}+\operatorname{circ}(\langle\mathcal{U}\rangle)^{\top} \operatorname{circ}(\langle\mathcal{U}\rangle) \tag{30}\\
& \left\langle\operatorname{circ}(\mathcal{V})^{\top} \operatorname{circ}(\mathcal{V})\right\rangle=I_{3} \Sigma^{v}+\operatorname{circ}(\langle\mathcal{V}\rangle)^{\top} \operatorname{circ}(\langle\mathcal{V}\rangle)
\end{align*}
$$

Inference for λ. Similar to the above derivations, the variational posterior of λ is given by

$$
\begin{equation*}
q(\boldsymbol{\lambda})=\prod_{r=1}^{R} \mathrm{Ga}\left(\lambda_{r} \mid a_{r}^{\lambda}, b_{r}^{\lambda}\right) \tag{32}
\end{equation*}
$$

where the posterior parameters are

$$
\begin{equation*}
a_{r}^{\lambda}=a_{0}^{\lambda}+\frac{\left(I_{1}+I_{2}\right) I_{3}}{2}, b_{r}^{\lambda}=b_{0}^{\lambda}+\frac{1}{2}\left\langle\left\|\overrightarrow{\mathbf{u}}_{\cdot r}\right\|^{2}+\left\|\overrightarrow{\mathbf{v}}_{\cdot r}\right\|^{2}\right\rangle . \tag{33}
\end{equation*}
$$

The involved expectation can be computed as follows:

$$
\begin{align*}
& \left\langle\left\|\overrightarrow{\mathbf{u}}_{\cdot r}\right\|^{2}\right\rangle=\sum_{i k}\left(\mathbf{\Sigma}^{u}+\left\langle\overrightarrow{\mathbf{u}}_{i \cdot}\right\rangle\left\langle\overrightarrow{\mathbf{u}}_{i \cdot}\right\rangle^{\top}\right)_{(k-1) R+r}, \tag{34}\\
& \left\langle\left\|\overrightarrow{\mathbf{v}}_{\cdot r}\right\|^{2}\right\rangle=\sum_{j k}\left(\mathbf{\Sigma}^{v}+\left\langle\overrightarrow{\mathbf{v}}_{j} .\right\rangle\left\langle\overrightarrow{\mathbf{v}}_{j \cdot}\right\rangle^{\top}\right)_{(k-1) R+r}, \tag{35}
\end{align*}
$$

where $(\cdot)_{(k-1) R+r}$ denotes the $((k-1) R+r)$ th diagonal ele- 504 ment of an $R I_{3} \times R I_{3}$ matrix.

From (32) and (33), the expectation of λ_{r} is given by 506 $\left\langle\lambda_{r}\right\rangle=a_{r}^{\lambda} / b_{r}^{\lambda}$, which is controlled by the squared ℓ_{2} norms of 507 $\overrightarrow{\mathbf{u}}_{\cdot r}$ and $\overrightarrow{\mathbf{v}}_{\cdot r}$. Smaller $\left\langle\left\|\overrightarrow{\mathbf{u}}_{\cdot r}\right\|^{2}\right\rangle$ and $\left\langle\left\|\overrightarrow{\mathbf{v}}_{. r}\right\|^{2}\right\rangle$ will lead to a 508 larger $\left\langle\lambda_{r}\right\rangle$, which in turn constrains more strongly the cor- 509 responding lateral slices towards zero due to (34) and (35). 510

Inference for \mathcal{S}. By applying (23) with $\Theta_{j}=\mathcal{S}$, the poste- 511 rior distribution of \mathcal{S} can be obtained as follows:

$$
\begin{equation*}
q(\mathcal{S})=\prod_{i j k} \mathcal{N}\left(S_{i j k} \mid\left\langle S_{i j k}\right\rangle, \sigma_{i j k}^{2}\right), \tag{36}
\end{equation*}
$$

with the parameters

$$
\begin{gather*}
\left\langle S_{i j k}\right\rangle=\langle\tau\rangle\left(\left\langle\beta_{i j k}\right\rangle+\langle\tau\rangle\right) z_{i j k}, \tag{37}\\
\sigma_{i j k}^{2}=\left(\left\langle\beta_{i j k}\right\rangle+\langle\tau\rangle\right)^{-1}, \tag{38}
\end{gather*}
$$

where $z_{i j k}$ denotes the k th element of $\mathbf{y}_{i j}-\left\langle\overrightarrow{\mathcal{U}}_{i \cdot}.\right\rangle *\left\langle\overrightarrow{\mathcal{V}}_{j .}^{\dagger}\right\rangle$.
From (37) and (38), $\left\langle S_{i j k}\right\rangle$ captures the model residuals 522 from $z_{i j k}$, and its magnitude is determined by the hyper- 523 parameter $\left\langle\beta_{i j k}\right\rangle$ and the noise precision $\langle\tau\rangle$. The conceptual 524 meaning of $q(\mathcal{U}), q(\mathcal{V})$, and $q(\mathcal{S})$ is that $\mathcal{U} * \mathcal{V}^{\dagger}$ explains global 525 information of the observed tensor \mathcal{Y} with the minimum ${ }_{526}$ tubal rank, while \mathcal{S} explains local information (non-Gaussian 527 outliers) that cannot be well represented by the low- 528 tubal-rank model.

Inference for β. The posterior distribution of β is given by

$$
\begin{equation*}
q\left(\beta_{i j k}\right)=\operatorname{Ga}\left(\beta_{i j k} \mid a_{i j k}^{\beta}, b_{i j k}^{\beta}\right), \tag{39}
\end{equation*}
$$

whose parameters can be updated as follows:

$$
\begin{equation*}
a_{i j k}^{\beta}=a_{0}^{\beta}+\frac{1}{2}, b_{i j k}^{\beta}=b_{0}^{\beta}+\frac{1}{2}\left\langle\beta_{i j k}^{2}\right\rangle \tag{40}
\end{equation*}
$$

Inference for τ. Finally, the noise precision has the follow- 537 ing posterior distribution:

$$
\begin{equation*}
q(\tau)=\mathrm{Ga}\left(\tau \mid a^{\tau}, b^{\tau}\right) \tag{41}
\end{equation*}
$$

$$
a^{\tau}=a_{\tau}^{0}+\frac{I}{2}, b^{\tau}=b_{0}^{\tau}+\frac{1}{2} \sum_{i j}\left\langle\left\|\mathbf{y}_{i j}-\overrightarrow{\mathcal{U}}_{i} . * \overrightarrow{\mathcal{V}}_{j .}^{\dagger}-\mathbf{s}_{i j}\right\|^{2}\right\rangle .
$$

The expectation of the model error is given by

$$
\begin{align*}
& \left\langle\left\|\mathbf{y}_{i j}-\overrightarrow{\mathcal{U}}_{i \cdot} * \overrightarrow{\mathcal{V}}_{j .}^{\dagger}-\mathbf{s}_{i j}\right\|^{2}\right\rangle=I_{1} I_{2} I_{3} \operatorname{tr}\left(\boldsymbol{\Sigma}^{u} \boldsymbol{\Sigma}^{v}\right) \\
& \quad+I_{1} I_{3}\left\langle\overrightarrow{\mathbf{v}}_{j .}\right\rangle^{\top} \boldsymbol{\Sigma}^{u}\left\langle\overrightarrow{\mathbf{v}}_{j .}\right\rangle+I_{2} I_{3}\left\langle\overrightarrow{\mathbf{u}}_{i \cdot} .\right\rangle^{\top} \boldsymbol{\Sigma}^{v}\left\langle\overrightarrow{\mathbf{u}}_{i \cdot} .\right\rangle \tag{43}\\
& \quad+\left\|\mathbf{y}_{i j}-\left\langle\overrightarrow{\mathcal{U}}_{i .}\right\rangle *\left\langle\overrightarrow{\mathcal{V}}_{j .} \cdot\right\rangle^{\dagger}-\left\langle\mathbf{s}_{i j}\right\rangle\right\|^{2}+\sum_{i j k} \sigma_{i j k}^{2} .
\end{align*}
$$

3.3 Efficient Updates in Frequency Domain

Although the above variational inference involves only closed-form updates, it is still relatively time consuming. Specifically, the updates for $q(\mathcal{U})$ and $q(\mathcal{V})$ dominate the whole variational inference. They require inversing and multiplying the $R I_{3} \times R I_{3}$ covariance matrices Σ^{u} and Σ^{v}, leading to $O\left(R^{3} I_{3}^{3}+R I_{1} I_{2} I_{3}^{2}\right)$ time complexity. This is impractical when dealing with real-world data with large I_{3}. Fortunately, such time complexity can be greatly reduced by using $D F T$ and reformulating the variational updates in the frequency domain. In what follows, we provide efficient variational updates for BTRTF, which not only reduce the time complexity to $O\left(R^{3} I_{3}+R I_{1} I_{2} I_{3}\right)$, but also lay the foundation for automatic multi-rank determination.

From (25), we can group all the horizontal slices of \mathcal{U} together and obtain

$$
\begin{aligned}
\operatorname{unfold}\left(\langle\mathcal{U}\rangle^{\dagger}\right) & =\left\langle\left(\overrightarrow{\mathbf{u}}_{1}, \ldots, \overrightarrow{\mathbf{u}}_{I_{1}} \cdot\right)\right\rangle \\
& =\langle\tau\rangle \Sigma^{u} \operatorname{circ}(\langle\mathcal{V}\rangle)^{\top} \operatorname{unfold}\left(\mathcal{Y}^{\dagger}-\langle\mathcal{S}\rangle^{\dagger}\right) .
\end{aligned}
$$

It is worth noting that although Σ^{u} and $\operatorname{circ}(\langle\mathcal{V}\rangle)$ have a large size of $R I_{3} \times R I_{3}$, both of them are block circulant matrices and can be block diagonalized by DFT. As a result, their multiplication and inverse can be efficiently computed in the frequency domain.

Let $\hat{\mathbf{F}}=\mathbf{F}_{I_{3}} \otimes \mathbf{I}_{I_{1}}$ and $\left\langle\overline{\mathcal{U}}^{\dagger}\right\rangle=\operatorname{fft}\left(\left\langle\mathcal{U}^{\dagger}\right\rangle,[], 3\right)$ be the blockwise DFT matrix and the DFT of $\left\langle\mathcal{U}^{\dagger}\right\rangle$, respectively. Then, it is easy to verify that

$$
\begin{aligned}
& \operatorname{unfold}\left(\langle\overline{\mathcal{U}}\rangle^{\dagger}\right)=\hat{\mathbf{F}} \cdot \operatorname{unfold}\left(\langle\mathcal{U}\rangle^{\dagger}\right) \\
& =\langle\tau\rangle \hat{\mathbf{F}} \boldsymbol{\Sigma}^{u} \hat{\mathbf{F}}^{-1} \hat{\mathbf{F}} \cdot \operatorname{circ}(\langle\mathcal{V}\rangle)^{\top} \hat{\mathbf{F}}^{-1} \hat{\mathbf{F}} \cdot \operatorname{unfold}\left(\mathcal{Y}^{\dagger}-\langle\mathcal{S}\rangle^{\dagger}\right)
\end{aligned}
$$

This indicates that $\langle\overline{\mathcal{U}}\rangle$ can be computed in a block-wise manner by using (7), and similar results hold for $\langle\mathcal{V}\rangle$ as well. Therefore, we can infer $q(\mathcal{U})$ and $q(\mathcal{V})$ by equivalently updating the DFTs of their parameters instead of the original ones. Specifically, the k th frontal slice of $\langle\overline{\mathcal{U}}\rangle$ and $\langle\overline{\mathcal{V}}\rangle$ can be updated as follows:

$$
\begin{gather*}
\left\langle\overline{\mathbf{U}}^{(k)}\right\rangle=\langle\tau\rangle\left(\overline{\mathbf{Y}}^{(k)}-\left\langle\overline{\mathbf{S}}^{(k)}\right\rangle\right)\left\langle\overline{\mathbf{V}}^{(k)}\right\rangle \overline{\mathbf{\Sigma}}^{u(k)}, \tag{44}\\
\overline{\mathbf{\Sigma}}^{u(k)}=\left(\langle\tau\rangle\left\langle\overline{\mathbf{V}}^{(k) \dagger} \overline{\mathbf{V}}^{(k)}\right\rangle+\operatorname{diag}(\langle\boldsymbol{\lambda}\rangle)\right)^{-1}, \tag{45}\\
\left\langle\overline{\mathbf{V}}^{(k)}\right\rangle=\langle\tau\rangle\left(\overline{\mathbf{Y}}^{(k)}-\left\langle\overline{\mathbf{S}}^{(k)}\right\rangle\right)^{\dagger}\left\langle\overline{\mathbf{U}}^{(k)}\right\rangle \overline{\mathbf{\Sigma}}^{v(k)}, \tag{46}\\
\overline{\mathbf{\Sigma}}^{v(k)}=\left(\langle\tau\rangle\left\langle\overline{\mathbf{U}}^{(k) \dagger} \overline{\mathbf{U}}^{(k)}\right\rangle+\operatorname{diag}(\langle\lambda\rangle)\right)^{-1}, \tag{47}
\end{gather*}
$$

where $\left\langle\overline{\mathbf{U}}^{(k)}\right\rangle \in \mathbb{C}^{I_{1} \times R},\left\langle\overline{\mathbf{V}}^{(k)}\right\rangle \in \mathbb{C}^{I_{2} \times R}$, and $\left\langle\overline{\mathbf{S}}^{(k)}\right\rangle \in \mathbb{C}^{I_{1} \times I_{2}}$ denote the k th frontal slice of $\langle\overline{\mathcal{U}}\rangle,\langle\overline{\mathcal{V}}\rangle$, and $\langle\overline{\mathcal{S}}\rangle$, respectively. The expectations in $\bar{\Sigma}^{u(k)}$ and $\bar{\Sigma}^{v(k)}$ can be computed by

$$
\begin{align*}
\left\langle\overline{\mathbf{U}}^{(k) \dagger} \overline{\mathbf{U}}^{(k)}\right\rangle & =I_{1} I_{3} \overline{\mathbf{\Sigma}}^{v(k)}+\left\langle\overline{\mathbf{U}}^{(k)}\right\rangle^{\dagger}\left\langle\overline{\mathbf{U}}^{(k)}\right\rangle, \tag{48}\\
\left\langle\overline{\mathbf{V}}^{(k) \dagger} \overline{\mathbf{V}}^{(k)}\right\rangle & =I_{2} I_{3} \overline{\mathbf{\Sigma}}^{u(k)}+\left\langle\overline{\mathbf{V}}^{(k)}\right\rangle^{\dagger}\left\langle\overline{\mathbf{V}}^{(k)}\right\rangle . \tag{49}
\end{align*}
$$

With the above results, we avoid directly manipulating 596 the $R I_{3} \times R I_{3}$ covariance matrices in (25) and (28), and turn 597 to updating I_{3} much smaller frontal slices in the frequency 598 domain via (44) and (46). Consequently, the computational 599 cost for estimating $q(\mathcal{U})$ and $q(\mathcal{V})$ is reduced from $O\left(R^{3} I_{3}^{3}+600\right.$ $\left.R I_{1} I_{2} I_{3}^{2}\right)$ to $O\left(R^{3} I_{3}+R I_{1} I_{2} I_{3}\right)$. The estimation for λ and τ can 601 also be accelerated by computing the expectations (34), (35), 602 and (43) in the frequency domain, leading to

$$
\begin{align*}
& \left\langle\left\|\overrightarrow{\mathbf{u}}_{\cdot r}\right\|^{2}\right\rangle=\sum_{k=1}^{I_{3}}\left(I_{1} \overline{\mathbf{\Sigma}}^{u(k)}+\frac{1}{I_{3}}\left\langle\overline{\mathbf{U}}^{(k)}\right\rangle^{\dagger}\left\langle\overline{\mathbf{U}}^{(k)}\right\rangle\right)_{r r}, \tag{50}\\
& \left\langle\left\|\overrightarrow{\mathbf{v}}_{\cdot r}\right\|^{2}\right\rangle=\sum_{k=1}^{I_{3}}\left(I_{2} \overline{\mathbf{\Sigma}}^{v(k)}+\frac{1}{I_{3}}\left\langle\overline{\mathbf{V}}^{(k)}\right\rangle^{\dagger}\left\langle\overline{\mathbf{V}}^{(k)}\right\rangle\right)_{r r}, \tag{51}\\
& \sum_{i j}\left\langle\left\|\mathbf{y}_{i j}-\overrightarrow{\mathcal{U}}_{i \cdot} * \overrightarrow{\mathcal{V}}_{j \cdot}^{\dagger}-\mathbf{s}_{i j}\right\|^{2}\right\rangle \\
& =\left\|\mathcal{Y}-\langle\mathcal{U}\rangle *\langle\mathcal{V}\rangle^{\dagger}-\langle\mathcal{S}\rangle\right\|_{F}^{2}+I_{1} I_{2} I_{3} \sum_{k=1}^{I_{3}} \operatorname{tr}\left(\overline{\mathbf{\Sigma}}^{u(k)} \overline{\mathbf{\Sigma}}^{v(k)}\right) \\
& \quad+I_{1} \sum_{k=1}^{I_{3}} \operatorname{tr}\left(\overline{\mathbf{\Sigma}}^{u(k)}\left\langle\overline{\mathbf{V}}^{(k)}\right\rangle^{\dagger}\left\langle\overline{\mathbf{V}}^{(k)}\right\rangle\right) \tag{52}\\
& \quad+I_{2} \sum_{k=1}^{I_{3}} \operatorname{tr}\left(\overline{\mathbf{\Sigma}}^{v(k)}\left\langle\overline{\mathbf{U}}^{(k)}\right\rangle^{\dagger}\left\langle\overline{\mathbf{U}}^{(k)}\right\rangle\right)+\sum_{i j k} \sigma_{i j k}^{2},
\end{align*}
$$ 606

where $(\cdot)_{r r}$ denotes the r th diagonal element of a $R \times R{ }_{612}$ matrix. As \mathcal{S} and $\boldsymbol{\beta}$ are factorized over elements, their updates 613 cannot be further accelerated in the frequency domain, and 614 stay the same.

3.4 Multi-Rank Prior

While the ARD prior achieves automatic tubal rank determi- 617 nation by introducing slice-wise sparsity in \mathcal{U} and \mathcal{V}, it is still 618 too restrictive to determine the multi-rank. Recall that the 619 low-tubal-rank model $\mathcal{X}=\mathcal{U} * \mathcal{V}^{\dagger}$ is equivalent to $\overline{\mathbf{X}}=\overline{\mathbf{U}} \overline{\mathbf{V}}^{\dagger}{ }_{620}$ because of (7), and the k th diagonal block of $\overline{\mathbf{X}}$ is given by 621 $\overline{\mathbf{X}}^{(k)}=\overline{\mathbf{U}}^{(k)} \overline{\mathbf{V}}^{(k) \dagger}$ [35]. From Definition 2.7, the multi-rank of $\mathcal{X}{ }_{622}$ is the vector $\operatorname{Rank} k_{\mathrm{m}}(\mathcal{X})=\left(\operatorname{Rank}\left(\overline{\mathbf{X}}^{(1)}\right), \ldots, \operatorname{Rank}\left(\overline{\mathbf{X}}^{\left(I_{3}\right)}\right)\right)$, and 623 its k th element $\operatorname{Rank}\left(\overline{\mathbf{X}}^{(k)}\right)$ is controlled by the number of col- 624 umns in $\overline{\mathbf{U}}^{(k)}$ and $\overline{\mathbf{V}}^{(k)}$. Notice that the tubal rank $\operatorname{Rank}_{\mathrm{t}}(\mathcal{X})=625$ $\max _{k} \operatorname{Rank}\left(\overline{\mathbf{X}}^{(k)}\right)$ is just the largest element of $\operatorname{Ran} k_{\mathrm{m}}(\mathcal{X})$. This ${ }_{626}$ indicates that determining multi-rank is a more general and 627 challenging problem.

For automatic multi-rank determination, we need to fit 629 the observed tensor while reducing the effective multi-rank. 630 To this end, we propose a generalized ARD prior, named as 631 multi-rank prior, by imposing sparse constraints on the col- 632 umns of $\overline{\mathbf{U}}^{(k)}$ and $\overline{\mathbf{V}}^{(k)}$. Similar to (17) and (18), we still place 633 a Gaussian prior over the latent factors \mathcal{U} and \mathcal{V} as follows: 634

$$
\begin{align*}
p\left(\mathcal{U} \mid \lambda_{\mathrm{m}}\right) & =\prod_{i=1}^{I_{1}} \prod_{r=1}^{R} \mathcal{N}\left(\mathbf{u}_{i r} \mid \mathbf{0}, \operatorname{circ}\left(\boldsymbol{\lambda}_{r}\right)^{-1}\right) \tag{53}\\
& =\prod_{i=1}^{I_{1}} \mathcal{N}\left(\overrightarrow{\mathbf{u}}_{i \cdot} \mid \mathbf{0}, \operatorname{circ}\left(\Lambda_{\mathrm{m}}\right)^{-1}\right)
\end{align*}
$$

$$
\begin{align*}
p\left(\mathcal{V} \mid \lambda_{\mathrm{m}}\right) & =\prod_{j=1}^{I_{2}} \prod_{r=1}^{R} \mathcal{N}\left(\mathbf{v}_{j r} \mid \mathbf{0}, \operatorname{circ}\left(\boldsymbol{\lambda}_{r}\right)^{-1}\right) \\
& =\prod_{j=1}^{I_{2}} \mathcal{N}\left(\overrightarrow{\mathbf{v}}_{j} \mid \mathbf{0}, \operatorname{circ}\left(\Lambda_{\mathrm{m}}\right)^{-1}\right) \tag{54}
\end{align*}
$$

where $\boldsymbol{\lambda}_{\mathrm{m}}=\left\{\lambda_{r}^{(k)}\right\}, \boldsymbol{\lambda}_{r}=\left[\lambda_{r}^{(1)}, \ldots, \lambda_{r}^{\left(I_{3}\right)}\right]^{\top}, \operatorname{circ}\left(\boldsymbol{\lambda}_{r}\right) \in \mathbb{R}^{I_{3} \times I_{3}}$ is the circulant matrix constructed by λ_{r}, and Λ_{m} is the $R \times R \times I_{3} \mathrm{f}$-diagonal tensor whose k th frontal slice is given by $\Lambda_{\mathrm{m}}^{(k)}=\operatorname{diag}\left(\left[\lambda_{1}^{(k)}, \ldots, \lambda_{R}^{(k)}\right]\right)$. To make sure $\operatorname{circ}\left(\boldsymbol{\lambda}_{r}\right)$ is symmetric as a valid covariance matrix, we define $\lambda_{r}^{(k)}=$ $\lambda_{r}^{\left(I_{3}-k-2\right)}$ for $k=2, \ldots, I_{3}$.

Compared with (17) and (18), our multi-rank prior has a similar form with the ARD prior, while the precision matrix for each tube is changed from $\lambda_{r}^{-1} \mathbf{I}_{I_{3}}$ to $\operatorname{circ}\left(\boldsymbol{\lambda}_{r}\right)$. Essentially, the ARD prior assumes that all the elements in \mathcal{U} and \mathcal{V} are independent, and makes each pair of lateral slices $\left(\overrightarrow{\mathcal{U}}_{\cdot r}\right.$ and $\overrightarrow{\mathcal{V}}_{\cdot r}$) governed by the same hyper-parameter λ_{r}. On the other hand, the proposed multi-rank prior takes a more general covariance matrix $\operatorname{circ}\left(\boldsymbol{\lambda}_{r}\right)$ for the tubes of $\overrightarrow{\mathcal{U}}_{r r}$ and $\overrightarrow{\mathcal{V}}_{\cdot r}$, and thus generalizes the ARD prior by characterizing the correlations within each tube of \mathcal{U} and \mathcal{V}.

By incorporating (53) and (54) into the BTRTF model, the posterior distributions of \mathcal{U} and \mathcal{V} still follow (24) and (27), respectively, expect that the term $\operatorname{circ}(\langle\Lambda\rangle)$ is replaced by $\operatorname{circ}\left(\left\langle\Lambda_{m}\right\rangle\right)$ in the covariance matrices (26) and (29). In the frequency domain, the updates for $\left\langle\overrightarrow{\mathbf{u}}_{i}.\right\rangle$ and $\left\langle\overrightarrow{\mathbf{v}}_{j}.\right\rangle$ are still the same via (44) and (46), repressively, while the updates for Σ^{v} and Σ^{u} become

$$
\begin{align*}
& \overline{\mathbf{\Sigma}}^{u(k)}=\left(\langle\tau\rangle\left\langle\overline{\mathbf{V}}^{(k) \dagger} \overline{\mathbf{V}}^{(k)}\right\rangle+\left\langle\bar{\Lambda}_{\mathrm{m}}^{(k)}\right\rangle\right)^{-1} \tag{55}\\
& \overline{\mathbf{\Sigma}}^{v(k)}=\left(\langle\tau\rangle\left\langle\overline{\mathbf{U}}^{(k) \dagger} \overline{\mathbf{U}}^{(k)}\right\rangle+\left\langle\bar{\Lambda}_{\mathrm{m}}^{(k)}\right\rangle\right)^{-1} \tag{56}
\end{align*}
$$

where $\left\langle\bar{\Lambda}_{\mathrm{m}}^{(k)}\right\rangle=\operatorname{diag}\left(\left[\left\langle\bar{\lambda}_{1}^{(k)}\right\rangle, \ldots,\left\langle\bar{\lambda}_{R}^{(k)}\right\rangle\right]\right)$ is the k th frontal slice of $\left\langle\bar{\Lambda}_{\mathrm{m}}\right\rangle=\operatorname{fft}\left(\left\langle\Lambda_{\mathrm{m}}\right\rangle,[], 3\right)$.

Due to the more general precision matrix $\operatorname{circ}\left(\Lambda_{m}\right)$, incorporating the multi-rank prior leads to the determinant term $\ln \left|\operatorname{circ}\left(\Lambda_{\mathrm{m}}\right)\right|$. Unlike the ARD case with $\ln |\operatorname{circ}(\Lambda)|=I_{3} \sum_{r=1}^{R}$ $\ln \lambda_{r}$, it cannot be decomposed into the sum of $\ln \lambda_{r}^{(k)}$. Consequently, placing a Gamma distribution over $\lambda_{r}^{(k)}$ will no longer lead to a tractable variational posterior $q\left(\lambda_{r}^{(k)}\right)$. To address this problem, we treat $\bar{\lambda}_{r}^{(k)}$ rather than $\lambda_{r}^{(k)}$ as a latent variable and place a Gamma distribution over it, leading to

$$
\begin{equation*}
p\left(\bar{\lambda}_{\mathrm{m}}\right)=\prod_{r=1}^{R} \prod_{k=1}^{I_{3}} \operatorname{Ga}\left(\bar{\lambda}_{r}^{(k)} \mid a_{0}^{\lambda}, b_{0}^{\lambda}\right) \tag{57}
\end{equation*}
$$

where we have defined $\bar{\lambda}_{\mathrm{m}}=\left\{\bar{\lambda}_{r}^{(k)}\right\}$.
It is worth noting that although the hyper-parameters λ_{m} are coupled, their DFTs $\bar{\lambda}_{\mathrm{m}}$ are decomposable in $\ln \mid$ circ $\left(\Lambda_{\mathrm{m}}\right) \mid=\sum_{r k} \ln \bar{\lambda}_{r}^{(k)}$ by applying (7). Due to this fact, we can substitute the prior distributions (53), (54), and (57) into the explicit form (23), and obtain the variational posterior for $\bar{\lambda}_{\mathrm{m}}$ as follows:

$$
\begin{equation*}
q\left(\bar{\lambda}_{\mathrm{m}}\right)=\prod_{r=1}^{R} \prod_{k=1}^{I_{3}} \operatorname{Ga}\left(\bar{\lambda}_{r}^{(k)} \mid a_{r k}^{\lambda}, b_{r k}^{\lambda}\right) \tag{58}
\end{equation*}
$$

where the posterior parameters can be updated by

$$
\begin{gather*}
a_{r k}^{\lambda}=a_{0}^{\lambda}+\frac{I_{1}+I_{2}}{2} \tag{59}\\
b_{r k}^{\lambda}=b_{0}^{\lambda}+\frac{1}{2 I_{3}}\left(\left\langle\overline{\mathbf{U}}^{(k) \dagger} \overline{\mathbf{U}}^{(k)}\right\rangle+\left\langle\overline{\mathbf{V}}^{(k) \dagger} \overline{\mathbf{V}}^{(k)}\right\rangle\right)_{r r} \tag{60}
\end{gather*}
$$

The involved expectations $\left\langle\overline{\mathbf{U}}^{(k) \dagger} \overline{\mathbf{U}}^{(k)}\right\rangle$ and $\left\langle\overline{\mathbf{V}}^{(k) \dagger} \overline{\mathbf{V}}^{(k)}\right\rangle$ have 693 been given by (48) and (49), respectively, and the posterior 694 mean is given by $\left\langle\bar{\lambda}_{r}^{(k)}\right\rangle=a_{r k}^{\lambda} / b_{r k}^{\lambda}$.

Sparsity in the Frequency Domain. Let $\overline{\mathbf{u}}_{r}^{(k)}$ and $\overline{\mathbf{v}}_{r}^{(k)}$ be the r th 696 component (column) of $\overline{\mathbf{U}}^{(k)}$ and $\overline{\mathbf{V}}^{(k)}$. An intuitive interpreta- 697 tion of $q\left(\bar{\lambda}_{\mathrm{m}}\right)$ (58) is that $a_{r k}^{\lambda}$ is related to the number of ele- 698 ments in $\overline{\mathbf{u}}_{r}^{(k)}$ and $\overline{\mathbf{v}}_{r}^{(k)}$, and $b_{r k}^{\lambda}$ is related to the squared $\ell_{2} 699$ norms $\left\langle\left\|\overline{\mathbf{u}}_{r}^{(k)}\right\|^{2}\right\rangle=\left(\left\langle\overline{\mathbf{U}}^{(k) \dagger} \overline{\mathbf{U}}^{(k)}\right\rangle\right)_{r r}$ and $\left\langle\left\|\overline{\mathbf{v}}_{r}^{(k)}\right\|^{2}\right\rangle=\left(\left\langle\overline{\mathbf{V}}^{(k) \dagger} \overline{\mathbf{V}}^{(k)}\right\rangle\right)_{r r} .700$ Smaller $\left\langle\left\|\overline{\mathbf{u}}_{r}^{(k)}\right\|^{2}\right\rangle$ and $\left\langle\left\|\overline{\mathbf{v}}_{r}^{(k)}\right\|^{2}\right\rangle$ will lead to a larger $\bar{\lambda}_{r}^{(k)}$, which 701 in turn pushes the corresponding $\overline{\mathbf{u}}_{r}^{(k)}$ and $\overline{\mathbf{v}}_{r}^{(k)}$ towards 702 zero. In this way, the multi-rank prior effectively makes 703 unnecessary components $\overline{\mathbf{u}}_{r}^{(k)}$ and $\overline{\mathbf{v}}_{r}^{(k)}$ inactive by con- 704 straining them to zero, and thus results in automatic 705 multi-rank determination.

Refinement with Relaxed Regularization. In our experiments, 707 we find the multi-rank prior may lead to premature model 708 and prune most factors before fitting the input data. To 709 address this problem, we propose a refinement trick to relax 710 the regularization effect of the multi-rank prior especially at 711 early iterations. Specifically, we gradually strengthen the 712 regularization effect by making the following modifications 713 in updating $\bar{\Sigma}^{u(k)}$ and $\bar{\Sigma}^{v(k)}$

$$
\begin{align*}
& \bar{\Sigma}^{u(k)}=\left(\langle\tau\rangle\left\langle\overline{\mathbf{V}}^{(k) \dagger} \overline{\mathbf{V}}^{(k)}\right\rangle+\frac{F i t}{\gamma}\left\langle\bar{\Lambda}_{\mathrm{m}}^{(k)}\right\rangle\right)^{-1} \tag{61}\\
& \overline{\boldsymbol{\Sigma}}^{v(k)}=\left(\langle\tau\rangle\left\langle\overline{\mathbf{U}}^{(k) \dagger} \overline{\mathbf{U}}^{(k)}\right\rangle+\frac{F i t}{\gamma}\left\langle\bar{\Lambda}_{\mathrm{m}}^{(k)}\right\rangle\right)^{-1} \tag{62}
\end{align*}
$$

where $\gamma>0$ is the relaxation parameter that adjusts the over- 720 all regularization strength of $\left\langle\bar{\Lambda}_{m}^{(k)}\right\rangle$. Fit $=1-\left\langle\| \mathcal{Y}-\mathcal{U} * \mathcal{V}^{\dagger}-721\right.$ $\left.\mathcal{S} \|_{F}\right\rangle /\|\mathcal{Y}\|_{F}$ indicates the goodness of fit for the BTRTF model 722 (12), where $\left\langle\left\|\mathcal{Y}-\mathcal{U} * \mathcal{V}^{\dagger}-\mathcal{S}\right\|_{F}\right\rangle$ is the square root of (52). 723

At the first few iterations, the low-tubal-rank model will 724 not fit the observed tensor \mathcal{Y} well, leading to a relatively large 725 model error and small Fit. In this case, the regularization 726 term $\left\langle\bar{\Lambda}_{\mathrm{m}}^{(k)}\right\rangle$ does not have much effect on the parameter esti- 727 mation, and thus no factor will be pruned at early iterations. 728 As the BTRTF model fits \mathcal{Y} better and better, Fit tends to 729 converge to 1 and gradually strengthens the regularization 730 effect. Eventually, the refined updates (61) and (62) return to 731 the original ones (55) and (56) given $\gamma=1$. In general, the 732 parameter γ could be tuned for different applications, while 733 we find that simply fixing $\gamma=I_{3}$ is enough to achieve good 73 performance in most cases. Therefore, we set $\gamma=I_{3}$ in all the 735 experiments unless otherwise specified. Algorithm 1 sum- 736 maries the variational inference method for BTRTF with 737 multi-rank determination.

3.5 Initialization

Since the variational inference method converges only to a 740 local optimum, it is necessary to select a reasonable initiali- 741 zation to avoid poor local solutions. For BTRTF, we set the 742 top level hyper-parameters $a_{0}^{\lambda}, b_{0}^{\lambda}, a_{0}^{\beta}, b_{0}^{\beta}, a_{0}^{\tau}$, and b_{0}^{τ} to $10^{-6}{ }_{743}$
for introducing noninformative priors. We then set the model precision $\langle\tau\rangle=a_{0}^{\tau} / b_{0}^{\tau}=1$. The factor tensors $\langle\mathcal{U}\rangle$ and $\langle\mathcal{V}\rangle$ can be initialized randomly by drawing each element from $\mathcal{N}(0,1)$. Another choice is to set $\langle\mathcal{U}\rangle=\mathcal{U}_{0} * \mathcal{D}_{0}^{\frac{1}{2}}$ and $\langle\mathcal{V}\rangle=\mathcal{V}_{0} * \mathcal{D}_{0}^{\frac{1}{2}}$, where $\mathcal{U}_{0}, \mathcal{V}_{0}$, and \mathcal{D}_{0} are obtained from the tSVD of $\mathcal{Y}=\mathcal{U}_{0} * \mathcal{D}_{0} * \mathcal{V}_{0}^{\dagger}$. The covariance matrices Σ^{u} and Σ^{v} are set to the identity matrix, and the hyper-parameter $\left\langle\bar{\lambda}_{r}^{(k)}\right\rangle$ for $\overline{\mathbf{u}}_{r}^{(k)}$ and $\overline{\mathbf{v}}_{r}^{(k)}$ is set to $a_{0}^{\lambda} / b_{0}^{\lambda}=1$. The hyper-parameter $\left\langle\beta_{i j k}\right\rangle$ is set to $1 / \sigma_{0}^{2}$, and the sparse component $\left\langle S_{i j k}\right\rangle$ is drawn from the uniform distribution $\mathcal{U}\left(0, \sigma_{0}\right)$, where σ_{0}^{2} is a task-specific constant and serves as the initialized variance of $S_{i j k}$ (see Sections 4.2 and 4.3 for more details).

```
Algorithm 1. BTRTF with Multi-Rank Determination
    Input: The observed tensor \(\mathcal{Y} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}\) and the initialized
    multi-rank \(\operatorname{Rank}_{\mathrm{m}}\left(\hat{\mathcal{X}}^{0}\right) \in \mathbb{R}^{I_{3}}\).
    Initialize \(\mathcal{U}, \Sigma^{u}, \mathcal{V}, \Sigma^{v}, \bar{\lambda}_{\mathrm{m}}, \mathcal{S}, \boldsymbol{\beta}\), and \(\tau\).
    repeat
        Update the posterior \(q(\mathcal{U})\) via (44) and (61);
        Update the posterior \(q(\mathcal{V})\) via (46) and (62);
        Update the posterior \(q\left(\bar{\lambda}_{\mathrm{m}}\right)\) via (58);
        Update the posterior \(q(\mathcal{S})\) via (36);
        Update the posterior \(q(\boldsymbol{\beta})\) via (39);
        Update the posterior \(q(\tau)\) via (41);
        Reduce the effective multi-rank by removing
        zero-components of \(\overline{\mathbf{U}}^{(k)}\) and \(\overline{\mathbf{V}}^{(k)}\);
    until convergence.
```


3.6 Connections with Existing Work

In this work, we mainly focus on the TRPCA problem, i.e., recovering tensors corrupted with outliers. One representative TRPCA method is SNN [21], which finds the uncorrupted tensor by minimizing the Tucker rank. KDRSDL [22] also seeks recovering a low-Tucker-rank tensor, while this is achieved by fitting the Tucker model with a predetermined Tucker rank. BRTF [28] formulates CP factorization under the Bayesian framework to obtain probabilistic outputs and automatic CP rank determination. The proposed BTRTF method also takes advantage of the Bayesian framework. Different from BRTF, it represents the uncorrupted tensor with the low-tubal-rank model instead of the CP one, leading to more expressive modeling power and more efficient variational updates.

Except the TRPCA problem, there have been many probabilistic tensor factorization methods for other applications such as tensor completion [33], [39], [40], [41], network analysis [42], [43], feature selection [44], multi-view learning [45], etc. For example, Bayesian Probabilistic Tensor Factorization [40] uses the CP model with the smooth constraints on the time dimension to address the temporal collaborative filtering problem. Infinite Tucker Decomposition [42], [43] introduces tensor-variate Gaussian and t processes into the Tucker model to discover nonlinear interactions among tensor elements. Bayesian multi-tensor factorization [45] proposes a relaxed model to jointly factorize multiple matrices and tensors, which can be viewed as a trade-off between the matrix (Tucker-1) and CP factorization.

Most existing probabilistic tensor factorization methods are based on the Tucker or CP model. In contrast, BTRTF is
based on the low-tubal-rank model with very distinct 801 Bayesian formulations. Although BTRTF is developed for 802 the TRPCA problem, its low-tubal-rank model specification 803 and variational inference scheme are general enough and 804 could be extended for other applications such as tensor 805 completion and feature extraction.

4 Experiments

This section evaluates our BTRTF on both synthetic and 808 real-world datasets. We apply BTRTF to image denoising 809 and background modeling, and compare it against several 810 state-of-the-art RPCA methods, including RPCA baselines: 811 RPCA [6], VBRPCA [46]; CP based RTF: BRTF [28]; Tucker 812 based TRPCAs: SNN [47], KDRSDL [22]; and Low-tubal-rank 813 TRPCAs: TNN [35], OR-TPCA [48]. ${ }^{1}$

4.1 Validation on Synthetic Data

We first validate the effectiveness of BTRTF in tensor recovery 816 and multi-rank determination on synthetic datasets. The syn- 817 thetic data are generated as follows: Two factor tensors 818 $\mathcal{U} \in \mathbb{R}^{I \times R \times I}$ and $\mathcal{V} \in \mathbb{R}^{I \times R \times I}$ are randomly generated with 819 their elements independently drawn from the standard 820 Gaussian distribution $\mathcal{N}(0,1)$. Then, the low-rank component 821 is constructed by $\mathcal{X}_{g t} \in \mathbb{R}^{I \times I \times I}=\mathcal{U} * \mathcal{V}^{\dagger}$, and is further trun- 822 cated by t-SVD to have $\operatorname{Rank}_{\mathrm{m}}\left(\mathcal{X}_{g t}\right)=\left(R_{g t}^{(1)}, \ldots, R_{g t}^{(I)}\right)$. We 823 generate the sparse component $\mathcal{S}_{g t} \in \mathbb{R}^{I \times I \times I}$ by randomly 824 selecting $\rho \%$ of the I^{3} elements to be nonzero, whose 825 values are uniformly drawn from $[-10,10]$. The noise term 826 $\mathcal{E} \in \mathbb{R}^{I \times I \times I}$ is generated by independently sampling its ele- 827 ments from $\mathcal{N}\left(0, \sigma^{2}\right)$ with the noise variance $\sigma^{2}=0$ or 828 $\sigma^{2}=10^{-3}$, where $\sigma^{2}=0$ indicates the noise-free case. Finally, 829 the observed tensor is constructed by $\mathcal{Y}=\mathcal{X}_{g t}+\mathcal{S}_{g t}+\mathcal{E}$. In 830 this experiment, we initialize the sparse component with 831 $\sigma_{0}^{2}=1$ and set the relaxation parameter $\gamma=1$, so that their 832 values will have no effect on model estimation. The initialized 833 rank of BTRTF is set to $\operatorname{Rank}_{\mathrm{m}}\left(\hat{\mathcal{X}}^{0}\right)=(0.5 I, \ldots, 0.5 I) \in \mathbb{R}^{I} .834$ The convergence criterion is tol $=\frac{\left\|\hat{\mathcal{X}}^{t}-\hat{\mathcal{X}}^{t-1}\right\|_{F}}{\left\|\hat{\mathcal{X}}^{t-1}\right\|_{F}}<10^{-6}$, where 835 $\hat{\mathcal{X}}^{t}$ is the estimated low-rank component at the t th iteration. 836

Table 2 shows the recovery results of BTRTF on the 837 synthetic data, where the rank error is defined as $R_{e r r}=838$ $\sum_{k=1}^{I} \frac{\left|\hat{R}^{(k)}-R_{g t}^{(k)}\right|}{I_{3}}$ and $\hat{R}^{(k)}$ is the estimated rank of the k th fron- 839 tal slice. As can be seen, BTRTF provides the correct multi- 840 rank in all the cases. It also obtains accurate reconstructions 841 for the low-rank and sparse components on the both noise- 842 free and noisy data. These demonstrate that BTRTF is capa- 843 ble of accurately recovering corrupted tensors and deter- 844 mining the correct multi-rank.

To further test BTRTF in multi-rank determination, we 846 compare BTRTF with Tensor Completion by Tensor Factori- 847 zation (TCTF) [33], which is a low-tubal-rank tensor com- 848 pletion method equipped with a heuristic multi-rank 849 determination strategy. Since TCTF cannot handle outliers, 850 BTRTF and TCTF are performed on synthetic tensors with- 851 out outliers $(\rho=0 \%)$ for fair comparison. Table 3 shows the 852

[^2]TABLE 2
Recovery Results of BTRTF on the Synthetic Datasets

			$40 \quad I_{3}-81$			$\overbrace{\ldots, 0.5 R}^{40}\}$								
$\operatorname{Rank}_{\mathrm{m}}\left(\mathcal{X}_{g t}\right)=\{R, \overbrace{0.5 R, \ldots, 0.5 R}, \overbrace{R, \ldots, R} \overbrace{0.5 R, \ldots, 0.5 R}\}$														
I	R	ρ	σ^{2}	$R_{e r r}$	$\frac{\left\\|\hat{\mathcal{X}}-\mathcal{X}_{g t}\right\\|_{F}}{\left\\|\mathcal{X}_{g t}\right\\|_{F}}$	$\frac{\left\\|\hat{\mathcal{S}}-\mathcal{S}_{g t}\right\\|_{F}}{\left\\|\mathcal{S}_{g t}\right\\|_{F}}$								
100	10	5\%	0	0	$1.26 \mathrm{e}-7$	$2.39 \mathrm{e}-6$								
			10^{-3}	0	$1.46 \mathrm{e}-5$	$6.28 \mathrm{e}-4$								
		10\%	0	0	$1.94 \mathrm{e}-7$	$2.62 \mathrm{e}-6$								
			10^{-3}	0	$1.50 \mathrm{e}-5$	$4.46 \mathrm{e}-4$								
		20\%	0	0	$3.90 \mathrm{e}-7$	$3.65 \mathrm{e}-6$								
			10^{-3}	0	$1.60 \mathrm{e}-5$	$3.23 \mathrm{e}-4$								
200	20	5\%	0	0	$8.95 \mathrm{e}-8$	$3.87 \mathrm{e}-6$								
			10^{-3}	0	$7.20 \mathrm{e}-6$	$5.61 \mathrm{e}-4$								
		10\%	0	0	$1.46 \mathrm{e}-7$	$4.41 \mathrm{e}-6$								
			10^{-3}	0	$7.43 \mathrm{e}-6$	$4.04 \mathrm{e}-4$								
		20\%	0	0	$3.42 \mathrm{e}-7$	$7.07 \mathrm{e}-6$								
			10^{-3}	0	$7.97 \mathrm{e}-5$	$2.96 \mathrm{e}-4$								
$R a n k_{\mathrm{m}}\left(\mathcal{X}_{g t}\right)=\{0.5 R, \overbrace{R, \ldots, R}^{40}, \overbrace{0.5 R, \ldots, 0.5 R}^{I_{3}-81}, \overbrace{R, \ldots, R}^{40}\}$														
I	R	ρ	σ^{2}	$R_{\text {err }}$	$\frac{\left\\|\hat{\mathcal{X}}-\mathcal{X}_{g t}\right\\|_{F}}{\left\\|\mathcal{X}_{g t}\right\\|_{F}}$	$\frac{\left\\|\hat{\mathcal{S}}-\mathcal{S}_{g t}\right\\|_{F}}{\left\\|\mathcal{S}_{g t}\right\\|_{F}}$								
100	10	5\%	0	0	$1.40 \mathrm{e}-7$	$3.33 \mathrm{e}-6$								
			10^{-3}	0	$1.45 \mathrm{e}-5$	$5.71 \mathrm{e}-4$								
		10\%	0	0	$2.29 \mathrm{e}-7$	$3.80 \mathrm{e}-6$								
			10^{-3}	0	$1.48 \mathrm{e}-5$	$4.09 \mathrm{e}-4$								
		20\%	0	0	$5.00 \mathrm{e}-7$	$5.64 \mathrm{e}-6$								
			10^{-3}	0	$1.61 \mathrm{e}-5$	$3.00 \mathrm{e}-4$								
200	20	5\%	0	0	$8.45 \mathrm{e}-8$	$3.43 \mathrm{e}-6$								
		5\%	10^{-3}	0	$7.23 \mathrm{e}-6$	$5.82 \mathrm{e}-4$								
		10\%	0	0	$1.47 \mathrm{e}-7$	$4.15 \mathrm{e}-6$								
		10\%	10^{-3}	0	$7.43 \mathrm{e}-6$	$4.12 \mathrm{e}-4$								
		20\%	0	0	$3.09 \mathrm{e}-7$	$6.00 \mathrm{e}-6$								
		20\%	10^{-3}	0	$8.00 \mathrm{e}-6$	$3.02 \mathrm{e}-4$								

rank determination results of TCTF and BTRTF on the synthetic datasets with $\rho=0 \%$. BTRTF correctly determines the multi-rank and accurately reconstructs the low-rank component. In contrast, TCTF fails to determine the correct multi-rank and leads to large reconstruction error. This demonstrates the superiority of BTRTF in multi-rank determination.

For comprehensiveness, BTRTF is also tested on the synthetic tensor $\mathcal{Y} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$ with $I_{1} \neq I_{2} \neq I_{3}$, and still obtains good results. Please refer to the supplementary materials for more details, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/ 10.1109/TPAMI.2019.2923240.

4.2 Image Denoising

This section considers image denoising for removing random noise from corrupted color images. In this task, clean images are approximated by the low-rank component, while random corruptions are regarded as sparse outliers.

Experimental Setup. We evaluate BTRTF and the competing methods on the Berkeley segmentation datasets (BSD500) [49], which consists of 500 color images represented by $321 \times 481 \times 3$ or $481 \times 321 \times 3$ tensors. We corrupt each color image by setting 10 percent of its elements to random values in [0, 255], so that up to 30 percent pixels are corrupted. Following the common settings, the pixel values of each image are further normalized to [0, 1], and we use peak signal-to-noise ratio (PSNR) to measure the recovery performance. Given the recovered tensor $\hat{\mathcal{X}} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$ and the ground truth $\mathcal{X}_{g t} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}$, PSNR can be computed as follows:

TABLE 3
Rank Determination Results on the Synthetic Datasets with $\rho=0 \%$

$\operatorname{Rank}_{\mathrm{m}}\left(\mathcal{X}_{g t}\right)=\{R, \overbrace{0.5 R, \ldots, 0.5 R}, \overbrace{R, \ldots, R}^{I_{3}-81} \overbrace{0.5 R, \ldots, 0.5 R}^{40}\}$														
Method			TCTF		BTRTF									
I	R	σ^{2}	$R_{\text {err }}$	$\frac{\left\\|\hat{\mathcal{X}}-\mathcal{X}_{g t}\right\\|_{F}}{\left\\|\mathcal{X}_{g t}\right\\|_{F}}$	$R_{\text {err }}$	$\frac{\left\\|\hat{\mathcal{X}}-\mathcal{X}_{g t}\right\\|_{F}}{\left\\|\mathcal{X}_{g t}\right\\|_{F}}$								
100	10	0	0.40	0.7072	0	$4.20 \mathrm{e}-10$								
		10^{-3}	0.36	0.7075	0	$1.41 \mathrm{e}-5$								
200	20	0	1.81	0.7071	0	$1.36 \mathrm{e}-10$								
		10^{-3}	1.82	0.7073	0	$6.98 \mathrm{e}-6$								
$\operatorname{Rank}_{\mathrm{m}}\left(\mathcal{X}_{g t}\right)=\{0.5 R, \overbrace{R, \ldots, R}^{40}, \overbrace{0.5 R, \ldots, 0.5 R}^{I_{3}-81}, \overbrace{R, \ldots, R}^{40}\}$														
Method			TCTF		BTRTF									
I	R	σ^{2}	Rerr	$\frac{\left\\|\hat{\mathcal{X}}-\mathcal{X}_{g t}\right\\|_{F}}{\left\\|\mathcal{X}_{g t}\right\\|_{F}}$	$R_{e r r}$	$\frac{\left\\|\hat{\mathcal{X}}-\mathcal{X}_{g t}\right\\|_{F}}{\left\\|\mathcal{X}_{g t}\right\\|_{F}}$								
100	10	0	1.04	0.7072	0	$4.68 \mathrm{e}-10$								
		10^{-3}	1.05	0.7075	0	$1.40 \mathrm{e}-5$								
200	20	0	1.52	0.7071	0	$1.29 \mathrm{e}-10$								
		10^{-3}	1.52	0.7073	0	$7.02 \mathrm{e}-6$								

$$
\operatorname{PSNR}=10 \log _{10}\left(\frac{\left\|\mathcal{X} \mathcal{X}_{t t}\right\|_{\infty}^{2}}{\frac{1}{I_{1} I_{2} I_{3}}\left\|\hat{\mathcal{X}}-\mathcal{X}_{g t}\right\|_{F}^{2}}\right)
$$

where $\|\cdot\|_{\infty}$ is the infinity norm.
Parameter Settings. For RPCA and VBRPCA, we reshape the 886 input tensors into 321×1443 or 481×963 matrices, because 887 they cannot directly deal with tensorial data. For RPCA, 888 VBRPCA, BRTF and KDRSDL, we employ their default 889 parameter settings, which lead to good performance in most 890 cases. For SNN and TNN, we follow the parameter settings 891 suggested in [34], [35]. For BTRTF, we set the initialized multi 892 rank to $\operatorname{Rank} k_{\mathrm{m}}\left(\hat{\mathcal{X}}^{0}\right)=(150,150,150)$, and the convergence cri- 893 terion to tol $<10^{-4}$. The sparse component is initialized with 894 $\sigma_{0}^{2}=10^{-7}$, so that $\hat{\mathcal{S}}^{0}$ is very close to a zero tensor. This makes 895 BTRTF prefer fitting the input image via the low-rank compo- 896 nent rather than the sparse one. Such settings are suitable for 897 image denoising, where only the low-rank component (recov- 898 ered image) is of interest.

Results and Analysis. Fig. 2 shows the recovered images 900 and PSNR values on 8 sample images of the BSD500 dataset. ${ }^{2} 901$ It can be seen that BTRTF obtains the highest average PSNR 902 value and achieves the best performance on 402 out of the 903 total 500 images from the BSD500 dataset. Specifically, it out- 904 perform the second best, TNN, by 1.90 on average. This can 905 be attributed to the BTRTF model in capturing low-tubal- 906 rank structures and the Bayesian framework in estimating 907 sparse outliers. In addition, tensor-based methods such as 908 KDRSDL, TNN and BTRTF often obtain much better results 909 than the matrix-based ones. This is probably because RPCA 910 and VBRPCA are performed on the reshaped images, and 911 fail to capture the correlations across RGB channels. Among 912 tensor-based methods, TNN and BTRTF achieve the top two 913 performance in most cases. This demonstrates that t-SVD 914 based models have an edge over the classical CP and Tucker 915 models in representing color images.

We also compare the average running time of each RPCA 917 method on all 500 images from the BSD500 dataset. From 918
2. We also provide the normalized mean square error (NMSE) results in the supplementary materials, available online.

(a) Original

(b) Noisy

(c) RPCA

(d) VBRPCA

(e) BRTF

(f) SNN

(g) KDRSDL

(h) TNN

(i) BTRTF

Image	1	2	3	4	5	6	7	8	Avg. on 500 images	\#Best	Avg. Time (s)
RPCA	28.76	25.61	25.44	32.09	27.47	23.34	32.37	27.94	26.00	0	$\mathbf{4 . 1 2}$
VBRPCA	25.99	21.16	22.55	28.61	23.44	18.89	27.81	23.29	21.79	0	$\underline{6.56}$
BRTF	27.73	23.54	25.56	29.92	26.04	27.02	29.10	$\underline{31.47}$	24.47	0	54.54
SNN	30.76	28.31	26.79	34.32	30.32	25.20	34.99	29.73	27.91	0	13.44
KDRSDL	30.61	$\underline{30.72}$	27.14	33.54	29.17	$\underline{28.14}$	32.06	31.38	29.21	32	33.46
TNN	$\underline{32.75}$	29.41	$\underline{28.68}$	$\underline{35.50}$	$\underline{32.92}$	27.04	$\underline{36.51}$	31.20	$\underline{29.86}$	$\underline{66}$	15.07
BTRTF	$\mathbf{3 6 . 6 8}$	$\mathbf{3 1 . 2 5}$	$\mathbf{3 3 . 1 8}$	$\mathbf{3 7 . 8 4}$	$\mathbf{3 5 . 0 3}$	$\mathbf{3 2 . 8 9}$	$\mathbf{3 8 . 5 2}$	$\mathbf{3 7 . 7 7}$	$\mathbf{3 1 . 7 7}$	$\mathbf{4 0 2}$	26.20

(j) PSNR values on the above 8 images (Best; Second best).

Fig. 2. Recovery results on the BSD500 dataset. (a) Original image; (b) Corrupted image; (c)-(i) Recovered images by different robust PCA methods; (j) Comparison of PSNR values on the above 8 images. Best viewed in $\times 4$ sized color pdf file.

Fig. 2j, RPCA and VBRPCA are the fastest methods, but they fail to perform well as they cannot fully utilize the tensor structures and tend to obtain an inaccurate low-rank component with the underestimated rank. BTRTF is faster than the non-convex TRPCAs, BRTF and KDRSDL, while slower than the convex methods such as SNN and TNN.

In summary, BTRTF obtains the best recovery results, provides probabilistic outputs, and achieves automatic rank determination, although it takes some computational cost for these benefits. It is worth noting that BTRTF is much faster than BRTF with better performance, despite the fact that both of them are based on variational inference for Bayesian model estimation. This can be attributed to the low-tubal-rank model of BTRTF in better representing color images and enabling the more efficient variational updates via estimating the model parameters in the frequency domain.

4.3 Background Modeling

This section evaluates BTRTF on the background modeling problem, which aims at separating foreground objects and background from a given video sequence. We consider videos recorded by stationary cameras, which are common in
video surveillance. In this case, background components of 940 different frames are highly correlated, and thus can be well 941 characterized by low-rank models. On the other hand, fore- 942 ground objects generally change a lot and can be considered 943 as sparse outliers.

Experimental Setup. We conduct experiments on 15 videos 945 from the I2R [50] and CDnet [51] datasets. The I2R dataset 946 consists of 9 real-world videos (Bootstrap, Campus, Curtain, 947 Escalator, Fountain, Hall, Lobby, ShoppingMall, WaterSur- 948 face) in different scenarios including static background, 949 dynamic background, and slow object movement. For each 950 video, 20 frames are labeled with the ground truth. The CDnet 951 dataset consists of 31 videos grouped as 6 categories repre- 952 senting a variety of motion and change detection challenges, 953 where the foreground objects are well annotated for each 954 frame. We test all 6 videos (Boats, Canoe, Fall, Fountain01, 955 Fountain02, Overpass) in the dynamic background category, 956 which is one of the most difficult categories for mounted cam- 957 era object detection. Since most videos in the I2R and CDnet 958 datasets have different sizes and frame numbers, we extract 959 300 frames and downsample them to around 160×180, so 960 that the input tensors have similar sizes $(160 \times 180 \times 300)$.

TABLE 4 Summary of Precision, Recall, and F-Measure on the I2R and CDnet Datasets (Best; Second Best)

	RPCA		VBRPCA		BRTF		SNN		KDRSDL		TNN		BTRTF	
Videos	$\begin{aligned} & \hline P \\ & R \end{aligned}$	F	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{R} \end{aligned}$	F	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{R} \end{aligned}$	F	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{R} \end{aligned}$	F	$\begin{aligned} & \hline P \\ & R \end{aligned}$	F	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{R} \end{aligned}$	F	$\begin{aligned} & \mathrm{P} \\ & \mathrm{R} \end{aligned}$	F
Bootstrap	$\begin{aligned} & 0.51 \\ & 0.26 \end{aligned}$	0.34	$\begin{aligned} & 0.34 \\ & 0.30 \end{aligned}$	0.32	$\begin{aligned} & 0.73 \\ & 0.42 \end{aligned}$	0.53	$\begin{aligned} & 0.61 \\ & 0.33 \end{aligned}$	0.43	$\begin{aligned} & 0.79 \\ & 0.45 \end{aligned}$	0.57	$\begin{aligned} & 0.79 \\ & 0.42 \end{aligned}$	$\underline{0.55}$	$\begin{aligned} & 0.55 \\ & 0.54 \end{aligned}$	$\underline{0.55}$
Campus	$\begin{aligned} & 0.09 \\ & 0.29 \end{aligned}$	0.13	$\begin{aligned} & 0.11 \\ & 0.28 \end{aligned}$	0.16	$\begin{aligned} & 0.51 \\ & 0.61 \end{aligned}$	0.55	$\begin{aligned} & 0.14 \\ & 0.67 \end{aligned}$	0.22	$\begin{aligned} & 0.16 \\ & 0.27 \end{aligned}$	0.20	$\begin{aligned} & 0.52 \\ & 0.83 \end{aligned}$	0.64	$\begin{aligned} & 0.87 \\ & 0.47 \end{aligned}$	$\underline{0.61}$
Curtain	$\begin{aligned} & 0.52 \\ & 0.46 \end{aligned}$	0.59	$\begin{aligned} & 0.40 \\ & 0.44 \end{aligned}$	0.42	$\begin{aligned} & 0.72 \\ & 0.49 \end{aligned}$	0.58	$\begin{aligned} & 0.64 \\ & 0.49 \end{aligned}$	0.55	$\begin{aligned} & 0.71 \\ & 0.67 \end{aligned}$	0.69	$\begin{aligned} & 0.88 \\ & 0.59 \end{aligned}$	$\underline{0.70}$	$\begin{aligned} & 0.94 \\ & 0.88 \end{aligned}$	0.91
Escalator	$\begin{aligned} & 0.38 \\ & 0.43 \end{aligned}$	0.40	$\begin{aligned} & 0.35 \\ & 0.42 \end{aligned}$	0.38	$\begin{aligned} & 0.77 \\ & 0.62 \end{aligned}$	$\underline{0.69}$	$\begin{aligned} & 0.47 \\ & 0.51 \end{aligned}$	0.50	$\begin{aligned} & 0.58 \\ & 0.30 \end{aligned}$	0.39	$\begin{aligned} & 0.73 \\ & 0.73 \end{aligned}$	0.73	$\begin{aligned} & 0.85 \\ & 0.64 \end{aligned}$	0.73
Fountain	$\begin{aligned} & 0.16 \\ & 0.33 \end{aligned}$	0.22	$\begin{aligned} & 0.16 \\ & 0.34 \end{aligned}$	0.22	$\begin{aligned} & 0.58 \\ & 0.75 \end{aligned}$	$\underline{0.66}$	$\begin{aligned} & 0.25 \\ & 0.53 \end{aligned}$	0.34	$\begin{aligned} & 0.26 \\ & 0.93 \end{aligned}$	0.40	$\begin{aligned} & 0.32 \\ & 0.85 \end{aligned}$	0.47	$\begin{aligned} & 0.86 \\ & 0.79 \end{aligned}$	0.82
Hall	$\begin{aligned} & 0.25 \\ & 0.49 \end{aligned}$	0.33	$\begin{aligned} & 0.26 \\ & 0.55 \end{aligned}$	0.35	$\begin{aligned} & 0.60 \\ & 0.56 \end{aligned}$	0.58	$\begin{aligned} & 0.34 \\ & 0.59 \end{aligned}$	0.43	$\begin{aligned} & 0.48 \\ & 0.73 \end{aligned}$	0.58	$\begin{aligned} & 0.65 \\ & 0.63 \end{aligned}$	0.64	$\begin{aligned} & 0.71 \\ & 0.56 \end{aligned}$	$\underline{0.63}$
Lobby	$\begin{aligned} & 0.11 \\ & 0.24 \end{aligned}$	0.15	$\begin{aligned} & 0.06 \\ & 0.18 \end{aligned}$	0.09	$\begin{aligned} & 0.55 \\ & 0.50 \end{aligned}$	0.52	$\begin{aligned} & 0.17 \\ & 0.35 \end{aligned}$	0.23	$\begin{array}{r} 0.75 \\ 0.89 \end{array}$	0.82	$\begin{aligned} & 0.83 \\ & 0.62 \end{aligned}$	$\underline{0.71}$	$\begin{aligned} & 0.82 \\ & 0.83 \end{aligned}$	0.82
ShoppingMall	$\begin{aligned} & 0.45 \\ & 0.44 \end{aligned}$	0.44	$\begin{aligned} & 0.30 \\ & 0.40 \end{aligned}$	0.34	$\begin{aligned} & 0.74 \\ & 0.73 \end{aligned}$	0.73	$\begin{aligned} & 0.57 \\ & 0.58 \end{aligned}$	0.58	$\begin{aligned} & 0.73 \\ & 0.82 \end{aligned}$	0.77	$\begin{aligned} & 0.80 \\ & 0.78 \end{aligned}$	0.79	$\begin{aligned} & 0.70 \\ & 0.76 \end{aligned}$	0.73
WaterSurface	$\begin{aligned} & 0.24 \\ & 0.20 \end{aligned}$	0.22	$\begin{aligned} & 0.27 \\ & 0.25 \end{aligned}$	0.26	$\begin{aligned} & 0.56 \\ & 0.27 \end{aligned}$	$\underline{0.36}$	$\begin{aligned} & 0.29 \\ & 0.26 \end{aligned}$	0.28	$\begin{aligned} & 0.30 \\ & 0.31 \end{aligned}$	0.30	$\begin{aligned} & 0.46 \\ & 0.29 \end{aligned}$	$\underline{0.36}$	$\begin{aligned} & 0.98 \\ & 0.81 \end{aligned}$	0.89
Boats	$\begin{aligned} & 0.71 \\ & 0.37 \end{aligned}$	0.49	$\begin{aligned} & 0.95 \\ & 0.53 \end{aligned}$	$\underline{0.68}$	$\begin{aligned} & 0.79 \\ & 0.29 \end{aligned}$	0.42	$\begin{aligned} & 0.45 \\ & 0.44 \end{aligned}$	0.45	$\begin{aligned} & 0.63 \\ & 0.19 \end{aligned}$	0.30	$\begin{aligned} & 0.55 \\ & 0.12 \end{aligned}$	0.19	$\begin{aligned} & 0.99 \\ & 0.54 \end{aligned}$	0.70
Canoe	$\begin{aligned} & 0.33 \\ & 0.44 \end{aligned}$	0.38	$\begin{aligned} & 0.47 \\ & 0.64 \end{aligned}$	$\underline{0.54}$	$\begin{aligned} & 0.55 \\ & 0.37 \end{aligned}$	0.44	$\begin{aligned} & 0.31 \\ & 0.52 \end{aligned}$	0.38	$\begin{aligned} & 0.12 \\ & 0.46 \end{aligned}$	0.20	$\begin{aligned} & 0.29 \\ & 0.27 \end{aligned}$	0.28	$\begin{aligned} & 0.99 \\ & 0.61 \end{aligned}$	0.75
Fall	$\begin{aligned} & 0.25 \\ & 0.21 \end{aligned}$	0.23	$\begin{aligned} & 0.20 \\ & 0.25 \end{aligned}$	0.22	$\begin{aligned} & 0.69 \\ & 0.28 \end{aligned}$	0.40	$\begin{aligned} & 0.52 \\ & 0.35 \end{aligned}$	0.42	$\begin{aligned} & 0.49 \\ & 0.55 \end{aligned}$	$\underline{0.52}$	$\begin{aligned} & 0.75 \\ & 0.40 \end{aligned}$	$\underline{0.52}$	$\begin{aligned} & 0.89 \\ & 0.86 \end{aligned}$	0.88
Fountain01	$\begin{aligned} & 0.02 \\ & 0.23 \end{aligned}$	0.04	$\begin{aligned} & 0.02 \\ & 0.31 \end{aligned}$	0.03	$\begin{aligned} & 0.03 \\ & 0.33 \end{aligned}$	0.06	$\begin{aligned} & 0.02 \\ & 0.27 \end{aligned}$	0.03	$\begin{aligned} & 0.02 \\ & 0.50 \end{aligned}$	0.03	$\begin{aligned} & 0.03 \\ & 0.39 \end{aligned}$	$\underline{0.05}$	$\begin{aligned} & 0.02 \\ & 0.37 \end{aligned}$	0.04
Fountain02	$\begin{aligned} & 0.10 \\ & 0.48 \end{aligned}$	0.17	$\begin{aligned} & 0.05 \\ & 0.54 \end{aligned}$	0.10	$\begin{aligned} & 0.41 \\ & 0.66 \end{aligned}$	0.51	$\begin{aligned} & 0.26 \\ & 0.56 \end{aligned}$	$\underline{0.35}$	$\begin{aligned} & 0.07 \\ & 0.88 \end{aligned}$	0.13	$\begin{aligned} & 0.19 \\ & 0.72 \end{aligned}$	0.31	$\begin{aligned} & 0.19 \\ & 0.74 \end{aligned}$	0.30
Overpass	$\begin{aligned} & 0.38 \\ & 0.27 \end{aligned}$	0.32	$\begin{aligned} & 0.40 \\ & 0.37 \end{aligned}$	0.38	$\begin{aligned} & 0.77 \\ & 0.40 \end{aligned}$	0.52	$\begin{aligned} & 0.39 \\ & 0.46 \end{aligned}$	0.42	$\begin{aligned} & 0.63 \\ & 0.65 \end{aligned}$	$\underline{0.64}$	$\begin{aligned} & 0.87 \\ & 0.42 \end{aligned}$	0.57	$\begin{aligned} & 0.93 \\ & 0.61 \end{aligned}$	0.74
Average	$\begin{aligned} & 0.30 \\ & 0.34 \end{aligned}$	0.30	$\begin{aligned} & 0.29 \\ & 0.39 \end{aligned}$	0.30	$\begin{aligned} & 0.60 \\ & 0.49 \end{aligned}$	0.47	$\begin{aligned} & 0.36 \\ & 0.46 \end{aligned}$	0.37	$\begin{aligned} & 0.45 \\ & 0.57 \end{aligned}$	0.44	$\begin{aligned} & 0.58 \\ & 0.54 \end{aligned}$	$\underline{0.50}$	$\begin{aligned} & 0.75 \\ & 0.67 \end{aligned}$	0.67

For quantitative evaluation, we compare the estimated sparse component (foreground) $\hat{\mathcal{S}}$ with the ground truth $\mathcal{S}_{g t}$, and regard this as a classification problem. Following the standard settings [11], [52], we evaluate the background subtraction results by precision, recall, and F-measure, which are defined as

$$
\begin{array}{r}
\text { Precision }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}, \text { Recall }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}, \\
\text { F-measure }=2 \frac{\text { Precision } \cdot \text { Recall }}{\text { Precision }+ \text { Recall }},
\end{array}
$$

where TP, FP, and FN represent the number of true positives, false positives, and false negatives, respectively. The higher these three measurements, the better the performance is.

Parameter Settings. For RPCA and VBRPCA, each video is first unfolded along the time dimension into the matrix of size around 28800×300, and then fed into the corresponding RPCA methods. Since there is no training/test partition
for the background modeling problem, we empirically select, 978 if necessary, the tuning parameters for the competing meth- 979 ods, so that they can perform well on most video sequences. 980 For BTRTF, we initialize σ_{0}^{2} to a large value 10^{7}. This allows 981 BTRTF to capture outliers of large magnitude (foreground 982 objects), and often leads to better foreground/background 983 separation. The initialized multi-rank for BTRTF is set to 984 $\operatorname{Rank}_{\mathrm{m}}\left(\hat{\mathcal{X}}^{0}\right)=\left(\min \left(I_{1}, I_{2}\right)-1 \ldots, \min \left(I_{1}, I_{2}\right)-1\right) \in \mathbb{R}^{300}$ for 985 the $I_{1} \times I_{2} \times 300$ video sequence. 986

4.3.1 Quantitative Evaluation

Table 4 shows the foreground detection results on the I2R and 988 CDnet datasets. It can be seen that BTRTF achieves the top two 989 performance in most cases, and obtains the best average 990 results in precision, recall, and F-measure. TNN is the second 991 best method, while it is still significantly worse than BTRTF by 992 0.17 in F-measure on average. These demonstrate: 1) t-SVD 993 based methods such as BTRTF and TNN are effective in back- 994 ground reconstruction by exploiting the correlations along the 995

Fig. 3. Detected background and foreground masks on five videos from the I2R and CDnet datasets. (a) Curtain, (b) ShoppingMall, (c) WaterSurface, (d) Boats, (e) Fall. For each video, there are two rows corresponding to background and foreground masks. Blue and red regions in the learned masks indicate false positives and false negatives, respectively.
time dimension. 2) Armed with the Bayesian framework, BTRTF is more advantageous in separating foreground objects especially for those with slow movement. It is worth noting that Fountain01 consists of significant dynamic background elements such as intense water flow, while the foreground objects are relatively small. This makes foreground/background separation much more challenging. As a result, all the methods fail to perform well on this video.

4.3.2 Visual Quality

To visualize the background modeling results, we select five videos from the I2R (Curtain, ShoppingMall, WaterSurface) and CDnet (Boats, Fall) datasets, and show the background
and foreground masks learned by different RPCA methods 1008 in Fig. 3. It can be seen that only BTRTF obtains coherent 1009 foreground masks while constructing clean background in 1010 all the cases. Matrix-based methods (RPCA and VBRPCA) 1011 can only obtain blurry background with severe ghosting 1012 effects. This is because they have to first reshape the input 1013 tensors into matrices and thus loss some structural informa- 1014 tion. On the other hand, tensor-based methods, especially 1015 TNN and BTRTF, obtain cleaner background with much 1016 more details, showing the capability of t-SVD based models 1017 in characterizing low-rank data information.

1018
From (a) Curtain and (c) WaterSurface, all the methods 1019 except BTRTF fail to separate the person, who walks through 1020
the camera and stands for a while, from the background. This is also the case for (d) Boats and (e) Fall, where the boat moves slowly and the truck is too long to quickly pass through the camera. Because of the slow motion of these foreground objects, the competing methods tend to overfit the low-rank component (background), and thus lead to more false negatives (the red regions) in the foreground masks. In contrast, BTRTF not only completely separates the foreground objects in all the cases, but also has less false positives (the blue regions) by filtering out many dynamic textures, e.g., fluctuations of waves and swaying of leaves. From (b) ShoppingMall, we observe ghosting effects in the background learned by KDRSDL and TNN, although they obtains higher F-measure than BTRTF. BRTF removes not only all the person but also many details such as patterns on the floor from the background. Only our BTRTF achieves good performance on both foreground detection and background construction.

Based on the visual and quantitative results, we summarize that 1) the performance of matrix-based methods is not good enough in background modeling, since they cannot utilize the informative tensor structures. 2) By exploiting the correlations along the time dimension, the low-tubal-rank model can construct the background with higher quality and more details than the classical CP and Tucker models. 3) BTRTF is superior to the competing methods in dealing with dynamic background elements and slow objective movement. This can be attributed to both the more expressive modeling power of the low-tubal-rank model in representing the background and the Bayesian framework in implicitly balancing the low-rank and sparse components.

5 Conclusion and Future Work

In this paper, we have proposed BTRTF, a fully Bayesian method for robust tensor factorization. By incorporating low-tubal-rank structures and a generalized ARD prior into the Bayesian framework, BTRTF features more expressive modeling power than classical Tucker and CP based approaches, automatic multi-rank determination, and implicit trade-off between the low-rank and sparse components. For model estimation, we have developed an efficient variational inference algorithm by updating the model parameters in the frequency domain. Experiments on both synthetic and real-world datasets demonstrated that BTRTF is effective in determining the multi-rank, and outperforms state-of-the-art RPCA methods in image denoising and background modeling.

Since the t-product, tubal rank, and multi-rank are originally defined on third-order tensors [18], we consider dealing with 3D data only in this work. Recently, there have been some attempts to generalize the t-product and t-SVD for higher-order tensors [25]. Along this line, we may also define higher-order extensions of the tubal rank and multi-rank. With these definitions, the BTRTF model along with the variational inference scheme can be naturally generalized for higher-order tensors, which could be the future work.

Acknowledgments

We thank Dr. Jian Lou for helpful discussions. This work was supported by the National Natural Science Foundation of China under Grants: 61672444 and 61272366 and in part
by the Faculty Research Grant of Hong Kong Baptist Uni- 1078 versity (HKBU) under Project FRG2/17-18/082, the KTO 1079 Grant of HKBU under Project MPCF-004-2017/18, and the 1080 SZSTI under Grant JCYJ20160531194006833. 1081

References

[1] Y. Koren, "Factorization meets the neighborhood: A multifaceted 1083 collaborative filtering model," in Proc. ACM SIGKDD Int. Conf. 1084 Knowl. Discovery Data Mining, 2008, pp. 426-434.
[2] M. Pang, Y.M. Cheung, B.H. Wang, and J. Lou, "Synergistic 1086 Generic Learning for Face Recognition from a Contaminated Sin- 1087 gle Sample per Person," IEEE Trans. Inf. Forensics Secur., doi: 1088 10.1109/TIFS.2019.2919950, 2019.
[3] M. Mørup, "Applications of tensor (multiway array) factoriza- 1090 tions and decompositions in data mining," Wiley Interdisciplinary 1091 Rev.: Data Mining Knowl. Discovery, vol. 1, no. 1, pp. 24-40, 2011. 1092
[4] I. Jolliffe, Principal Component Analysis, 2nd ed. Berlin, Germany: 1093 Springer, 2002.
[5] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, "Robust princi- 1095 pal component analysis: Exact recovery of corrupted low-rank 1096 matrices via convex optimization," in Proc. Int. Conf. Neural Inf. 1097 Process. Syst., 2009, pp. 2080-2088.
[6] E. J. Candès, X. Li, Y. Ma, and J. Wright, "Robust principal compo- 1099 nent analysis?" J. ACM, vol. 58, no. 3, 2011, Art. no. 11.
[7] X. Ding, L. He, and L. Carin, "Bayesian robust principal component 1101 analysis," IEEE Trans. Image Process., vol. 20, no. 12, pp. 3419-3430, 1102 Dec. 2011
[8] N. Wang and D.-Y. Yeung, "Bayesian robust matrix factorization 1104 for image and video processing," in Proc. IEEE Int. Conf. Comput. 1105 Vis., 2013, pp. 1785-1792.

1106
[9] H. Ji, C. Liu, Z. Shen, and Y. Xu, "Robust video denoising using 1107 low rank matrix completion," in Proc. IEEE Conf. Comput. Vis. Pat- 1108 tern Recognit., 2010, pp. 1791-1798.
[10] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, "Robust recovery 1110 of subspace structures by low-rank representation," IEEE Trans. 1111 Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 171-184, Jan. 2013. 1112
[11] X. Zhou, C. Yang, and W. Yu, "Moving object detection by detecting 1113 contiguous outliers in the low-rank representation," IEEE Trans. 1114
Pattern Anal. Mach. Intell., vol. 35, no. 3, pp. 597-610, Mar. 2013.
[12] T. G. Kolda and B. W. Bader, "Tensor decompositions and 1116 applications," SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009.
[13] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, Multilinear 1118 Subspace Learning: Dimensionality Reduction of Multidimensional 1119 Data. Boca Raton, FL, USA: CRC Press, 2013.

1120
[14] L. R. Tucker, "Some mathematical notes on three-mode factor ana- 1121 lysis," Psychometrika, vol. 31, no. 3, pp. 279-311, 1966.

1122
[15] R. A. Harshman, "Foundations of the PARAFAC procedure: Mod- 1123 els and conditions for an "explanatory" multimodal factor analy- 1124 sis," UCLA Work. Papers Phonetics, vol. 16, pp. 1-84, 1970.

1125
[16] J. D. Carroll and J.-J. Chang, "Analysis of individual differences in 1126 multidimensional scaling via an N-way generalization of Eckart- 1127 Young decomposition," Psychometrika, vol. 35, no. 3, pp. 283-319, 1128 1970.
[17] M. E. Kilmer and C. D. Martin, "Factorization strategies for third- 1130 order tensors," Linear Algebra Appl., vol. 435, no. 3, pp. 641-658, 2011. 1131
[18] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, "Third-order 1132 tensors as operators on matrices: A theoretical and computational 1133 framework with applications in imaging," SIAM J. Matrix Anal. 1134 Appl., vol. 34, no. 1, pp. 148-172, 2013.
[19] C. Mu, B. Huang, J. Wright, and D. Goldfarb, "Square deal: Lower 1136 bounds and improved relaxations for tensor recovery," in Proc. 1137 Int. Conf. Mach. Learn., 2014, pp. 73-81.
[20] D. Goldfarb and Z. Qin, "Robust low-rank tensor recovery: Mod- 1139 els and algorithms," SIAM J. Matrix Anal. Appl., vol. 35, no. 1, 1140 pp. 225-253, 2014.
[21] J. Liu, P. Musialski, P. Wonka, and J. Ye, "Tensor completion for 1142 estimating missing values in visual data," IEEE Trans. Pattern 1143 Anal. Mach. Intell., vol. 35, no. 1, pp. 208-220, Jan. 2013.

1144
[22] M. Bahri, Y. Panagakis, and S. Zafeiriou, "Robust Kronecker- 1145 decomposable component analysis for low-rank modeling," in 1146 Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 3372-3381.
[23] Q. Shi, Y.-M. Cheung, and Q. Zhao, "Feature extraction for 1148 incomplete data via low-rank tucker decomposition," in Proc. 1149 Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases, 2017, 1150 pp. 564-581.
[24] Q. Shi, Y. Cheung, Q. Zhao, and H. Lu, "Feature extraction for incomplete data via low-rank tensor decomposition with feature regularization," IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 6, pp. 1803-1817, Jun. 2019.
[25] C. D. Martin, R. Shafer, and B. LaRue, "An order-p tensor factorization with applications in imaging," SIAM J. Sci. Comput., vol. 35, no. 1, pp. A474-A490, 2013.
[26] J. Landsberg, Tensors: Geometry and Applications, vol. 128. Providence, RI, USA: American Mathematical Society, 2011.
[27] C. J. Hillar and L.-H. Lim, "Most tensor problems are NP-hard," J. ACM, vol. 60, no. 6, 2013, Art. no. 45.
[28] Q. Zhao, G. Zhou, L. Zhang, A. Cichocki, and S.-I. Amari, "Bayesian robust tensor factorization for incomplete multiway data," IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 4, pp. 736-748, Apr. 2016.
[29] X. Chen, Z. Han, Y. Wang, Q. Zhao, D. Meng, L. Lin, and Y. Tang, "A generalized model for robust tensor factorization with noise modeling by mixture of Gaussians," IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5380-5393, Nov. 2018.
[30] X.-Y. Liu, S. Aeron, V. Aggarwal, and X. Wang, "Low-tubal-rank tensor completion using alternating minimization," arXiv:1610.01690, 2016.
[31] O. Semerci, N. Hao, M. E. Kilmer, and E. L. Miller, "Tensor-based formulation and nuclear norm regularization for multienergy computed tomography," IEEE Trans. Image Process., vol. 23, no. 4, pp. 1678-1693, Apr. 2014.
[32] Z. Zhang and S. Aeron, "Exact tensor completion using t-SVD," IEEE Trans. Signal Process., vol. 65, no. 6, pp. 1511-1526, Mar. 2017.
[33] P. Zhou, C. Lu, Z. Lin, and C. Zhang, "Tensor factorization for low-rank tensor completion," IEEE Trans. Image Process., vol. 27, no. 3, pp. 1152-1163, Mar. 2018.
[34] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, "Tensor robust principal component analysis: Exact recovery of corrupted lowrank tensors via convex optimization," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 5249-5257.
[35] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, "Tensor robust principal component analysis with a new tensor nuclear norm," IEEE Trans. Pattern Anal. Mach. Intell., doi: 10.1109/ TPAMI.2019.2891760, 2019.
[36] R. M. Neal, Bayesian Learning for Neural Networks, vol. 118. Berlin, Germany: Springer, 2012.
[37] M. J. Beal, et al., Variational Algorithms for Approximate Bayesian Inference. London, U.K.: Univ. of London, 2003.
[38] J. Winn and C. M. Bishop, "Variational message passing," J. Mach. Learn. Res., vol. 6, no. Apr., pp. 661-694, 2005.
[39] W. Chu and Z. Ghahramani, "Probabilistic models for incomplete multi-dimensional arrays," in Proc. Int. Conf. Artif. Intell. Statist., 2009, pp. 89-96.
[40] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell, "Temporal collaborative filtering with Bayesian probabilistic tensor factorization," in Proc. SIAM Int. Conf. Data Mining, 2010, pp. 211-222.
[41] P. Rai, Y. Wang, S. Guo, G. Chen, D. Dunson, and L. Carin, "Scalable Bayesian low-rank decomposition of incomplete multiway tensors," in Proc. Int. Conf. Mach. Learn., 2014, pp. 1800-1808.
[42] Z. Xu, F. Yan, and Y. Qi, "Infinite Tucker decomposition: Nonparametric Bayesian models for multiway data analysis," in Proc. Int. Conf. Mach. Learn., 2012, pp. 1675-1682.
[43] Z. Xu, F. Yan, and Y. Qi, "Bayesian nonparametric models for multiway data analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 2, pp. 475-487, Feb. 2015.
[44] R. Shi and J. Kang, "Thresholded multiscale Gaussian processes 1212 with application to Bayesian feature selection for massive neuro- 1213 imaging data," arXiv:1504.06074, 2015.
[45] S. A. Khan, E. Leppäaho, and S. Kaski, "Bayesian multi-tensor 1215 factorization," Mach. Learn., vol. 105, no. 2, pp. 233-253, 2016.
46] S. D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, 1217 "Sparse Bayesian methods for low-rank matrix estimation," IEEE Trans. Signal Process., vol. 60, no. 8, pp. 3964-3977, Aug. 2012.
47l B. Huang C Mu, D. Goldfarb, and J Wright, "Provable low 1219 tensor recovery," Optimization-Online, vol. 4252, 2014, Art. no. 2.
[48] P. Zhou and J. Feng, "Outlier-robust tensor PCA," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3938-3946.
[49] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, "Contour detection and hierarchical image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 898-916, May 2011.

1224
1225 L. Li, W. Huang, Y -H Gu and Q Tian "Statistical moding of 1226 complex backgrounds for foreground object detection," IEEE 1228 Trans. Image Process., vol. 13, no. 11, pp. 1459-1472, Nov. 2004.
[51] N. Goyette, P. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, 1230 "Changedetection.net: A new change detection benchmark data- 1231 set," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 1232 2012, pp. 1-8.
[52] W. Hu, Y. Yang, W. Zhang, and Y. Xie, "Moving object detection 1234 using tensor-based low-rank and saliently fused-sparse decom- 1235 position," IEEE Trans. Image Process., vol. 26, no. 2, pp. 724-737, 1236 Feb. 2017.

Yang Zhou received the PhD degree from the 1238 Department of Computer Science, Hong Kong Bap- 1239 tist University, Hong Kong, in 2019. He is currently 1240 an assistant professor with the School of Computer 1241 Science and Software Engineering, East China Nor- 1242 mal University, Shanghai, China. His research inter- 1243 ests include probabilistic modeling, tensor analysis, 1244 and machine learning.

Yiu-Ming Cheung (F'18) received the PhD 1246 degree from the Department of Computer Sci- 1247 ence and Engineering, Chinese University of 1248 Hong Kong, Hong Kong. He is currently a full 1249 professor with the Department of Computer 1250 Science, Hong Kong Baptist University, Hong 1251 Kong. His research interests include machine 1252 learning, pattern recognition, visual comput- 1253 ing, and optimization. He serves as an associ- 1254 ate editor of the IEEE Transactions on Neural 1255 Networks and Learning Systems, the IEEE 1256 Transactions on Cybernetics, the Pattern Recognition, to name a few. He 1257 is a fellow of the IEEE, IET, BCS, and RSA, and IETI distinguished fellow. 1258 More details can be found at: http://www.comp.hkbu.edu.hk/~ymc.
\triangleright For more information on this or any other computing topic, 1260 please visit our Digital Library at www.computer.org/publications/dlib. 1261

[^0]: 421

[^1]: 429

[^2]: 1. Since OR-TPCA is designed mainly for classification and performs worse than TNN in our experiments, its results are not reported for simplicity.
