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Abstract—Linear discriminant analysis (LDA) is a classical
supervised subspace learning technique that has wide
applications. However, it is designed for vector only, which cannot
exploit the tensor structures and may lead to suboptimal results
when dealing with tensorial data. To address this problem, sev-
eral multilinear LDA (MLDA) methods have been proposed to
learn the subspaces from tensors. By exploiting the tensor struc-
tures, they achieve compact subspace representations, reduced
parameter sizes, and improved robustness against the small sam-
ple size problem. However, existing MLDA methods do not take
data uncertainty into account, fail to converge properly, or have
to introduce additional tuning parameters for good convergence
properties. In this paper, we therefore solve these limitations
by proposing a probabilistic MLDA method for matrix inputs.
Specifically, we propose a new generative model to incorpo-
rate structural information into the probabilistic framework,
where each observed matrix is represented as a linear com-
bination of collective and individual rank-one matrices. This
provides our method with both the expressiveness of captur-
ing discriminative features and nondiscriminative noise, and the
capability of exploiting the 2-D tensor structures. To overcome
the convergence problem of existing MLDAs, we develop an EM-
type algorithm for parameter estimation, which has closed-form
solutions with convergence guarantees. Experimental results on
real-world datasets show the superiority of the proposed method
to other probabilistic and MLDA variants.

Index Terms—Discriminant analysis, multilinear subspace
learning, probabilistic models.

I. INTRODUCTION

DUE TO the difficulties of processing high-dimensional
data, the demand for dimensionality reduction is per-

vasive in pattern recognition, data mining, computer vision,
and so on [1]–[5]. Subspace learning techniques aim at repre-
senting high-dimensional data in a low-dimensional subspace
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while preserving their intrinsic characteristics. By handling
data in the learned subspace, subsequent tasks such as clus-
tering, classification, visualization, and interpretation can be
greatly facilitated. Principal component analysis (PCA) [6] and
linear discriminant analysis (LDA) [7] are probably the most
popular subspace learning techniques. PCA is an unsupervised
method, which learns a subspace that preserves maximum data
variance. LDA is a supervised method. It learns a subspace
by maximizing between-class scatter while minimizing within-
class scatter, so that data of the same class are grouped together
while those of different classes are well separated. Because of
its supervised nature, LDA is generally more suitable than
PCA for dealing with labeled data.

In real-life, many data are naturally organized as
tensors [8]–[11]. For example, gray-level images are 2-D ten-
sors (matrices), gray-scale video sequences are 3-D tensors,
and fMRI images are 4-D tensors. Although, the effective-
ness of LDA has been demonstrated in many applications, it
is designed for vectors only, and has to first reshape tenso-
rial inputs into vectors when it comes to dealing with tensors.
Consequently, LDA fails to exploit the structural information
from tensors due to the reshaping. Moreover, it is often the
case that many real-world tensors, such as whole-brain MRI
or fMRI scans are very high-dimensional, where the number
of samples is usually much smaller than that of features. In
this scenario, LDA may suffer from the small sample size
(SSS) problem and obtain degraded performance [12] because
the estimation of between- and within-class scatter tends to be
inaccurate with limited sample sizes.

To address these problems, several multilinear LDA
(MLDA) methods have been proposed, which are motivated
by the observations that tensor structures are very informa-
tive and helpful for subspace learning, and can be used to
alleviate the SSS problem [13]–[17]. By exploiting the ten-
sor structures, MLDAs learn multilinear projections to reduce
the dimensionality of tensors from each direction (i.e., mode),
e.g., the column and row directions for 2-D tensors (matrices).
This provides MLDAs with compact subspace representa-
tions, reduced parameter sizes, and improved robustness in
estimating the scatter matrices [18].

2-D LDA (2DLDA) [19] takes matrices as inputs, and alter-
nately learns the column and row subspaces by maximizing
the ratio of between-class to within-class scatter. Discriminant
analysis with tensor representation (DATER) [20] general-
izes 2DLDA to higher-order cases for dealing with general
tensors. Based on the same scatter-ratio-based discriminant cri-
terion, uncorrelated MLDA (UMLDA) [21] further imposes
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uncorrelated constraints on subspace bases for less feature
redundancy, where each basis is solved in a greedy and
successive way.

One main limitation of the above ratio-based MLDAs is that
they fail to monotonically increase their objective function,
i.e., the scatter ratio, over iterations, and thus have no conver-
gence guarantee. To avoid this problem, general tensor dis-
criminant analysis (GTDA) [22] learns subspaces by maximiz-
ing the scatter difference rather than the ratio. Similarly, tensor
rank-one discriminant analysis (TR1DA) [23] successively
finds each subspace basis based on the scatter difference cri-
terion. Unlike their ratio-based counterparts, difference-based
MLDAs can monotonically increase the scatter difference
over iterations, and thus achieve good convergence properties.
However, they have to introduce additional tuning parameters
to control the weight between the between- and within-class
scatter. From the practical perspective, these parameters are
often sensitive and difficult to be well-determined.

Although, both the scatter ratio and difference are valid dis-
criminant criteria, they suffer from their own limitations for
multilinear subspace learning, leading to either convergence
problems or additional tuning parameters. To address these
limitations, this paper, therefore, considers multilinear sub-
space learning from a probabilistic perspective, and proposes a
probabilistic MLDA for matrix inputs, named as probabilistic
rank-one discriminant analysis (PRODA).

Instead of taking the scatter ratio or difference as the
discriminant criterion, PRODA aims at maximizing the log-
likelihood of a generative model that characterizes between-
and within-class information by the variation of collective and
individual latent features, respectively. In this way, PRODA
inherits the capability of MLDAs in exploiting the 2-D ten-
sor structures while achieving guaranteed convergence without
introducing additional tuning parameters. Moreover, it is well-
known that the probabilistic framework offers unique advan-
tages in capturing data uncertainty, handling missing data, and
Bayesian model selection. Theses benefits also motivate us to
develop a probabilistic approach to MLDAs accordingly. Our
contribution is summarized below.

1) We propose a new generative model for learning
discriminative subspaces from matrices, where each
observed matrix is represented as a linear combination of
collective and individual rank-one matrices. In this way,
the proposed model achieves both the expressiveness of
capturing discriminative features and nondiscriminative
noise, and the capability of exploiting the 2-D tensor
structures.

2) To overcome the convergence problem of existing
MLDAs, we develop an EM-type algorithm for parame-
ter estimation. By maximizing the log-likelihood rather
than the scatter ratio or difference, the proposed method
is guaranteed to converge to local optima without intro-
ducing additional tuning parameters.

It is worth noting that PRODA is designed for 2-D ten-
sors (matrices), but the proposed idea is general and can be
extended to higher-order cases.

The rest of this paper is organized as follows. Section II
introduces the notations used in this paper and briefly reviews

some related work. The proposed PRODA method is then
presented in Section III. Section IV evaluates PRODA on real-
world datasets against the competing LDA variants, and finally
Section V gives the concluding remarks.

II. PRELIMINARIES

A. Notations

Vectors are denoted by boldface lowercase letters, e.g., x.
Matrices are denoted by boldface capital letters, e.g., X.
Symbols ⊗, �, and � denote the Kronecker, column-wise
Kronecker, and entry-wise products, respectively. 〈·〉 denotes
the expectation with respect to a certain distribution. vec(X)

is the vector stacked by the columns of X. diag(x) is the diag-
onal matrix created from x. The random matrix X ∈ R

dc×dr ∼
Ndc,dr (�,�c, �r) means that X follows the matrix-variate
normal distribution with the mean matrix � ∈ R

dc×dr , the col-
umn covariance matrix �c ∈ R

dc×dc , and the row covariance
matrix �r ∈ R

dr×dr .

B. Linear Discriminant Analysis

Let {{xjk ∈ R
d}Nk

j=1}K
k=1 be the training set that consists of

N = ∑K
k=1 Nk samples from K classes, where xjk is the jth

sample of the kth class, and Nk is the number of samples in
the kth class. LDA seeks a linear projection U(LDA) ∈ R

d×q

that maximizes the Fisher’s discriminant ratio as follows [7]:

U(LDA) = arg max
U

∣
∣
∣U	S(LDA)

B U
∣
∣
∣

∣
∣
∣U	S(LDA)

W U
∣
∣
∣

(1)

where S(LDA)
B ∈ R

d×d and S(LDA)
W ∈ R

d×d are the between-
and within-class scatter matrices, respectively.

The definitions of S(LDA)
B and S(LDA)

W are given by

S(LDA)
B =

K∑

k=1

Nk
(
μk − μ

)(
μk − μ

)	 (2)

S(LDA)
W =

∑

jk

(
xjk − μk

)(
xjk − μk

)	 (3)

where
∑

jk is the abbreviation of
∑K

k=1
∑Nk

j=1, μ =
(1/N)

∑
jk xjk is the mean of the whole training set, and μk =

(1/Nk)
∑Nk

j=1 xjk is the mean of the kth class. The LDA solu-

tion U(LDA) is given by the eigenvectors of (S(LDA)
W )−1S(LDA)

B
corresponding to the q largest eigenvalues.

C. Probabilistic LDA

LDA establishes a simple and effective way of super-
vised subspace learning, and has been extended for different
applications. Among various LDA extensions, Probabilistic
LDA (PLDA) [24]–[26] is one of the most popular repre-
sentatives, which is closely related to our PRODA method.
Unlike LDA, PLDA learns discriminative subspaces by esti-
mating a generative model that characterizes between-class
and within-individual variation. Specifically, PLDA models the
jth observed vector of the kth class xjk as follows:

xjk = Uyyk + Uzzjk + μ + εjk (4)
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where yk is the Py-dimensional latent class variable, zjk is the
Pz-dimensional latent individual variable, Uy ∈ R

d×Py is the
class factor matrix, Uz ∈ R

d×Pz is the individual factor matrix,
εjk ∈ R

d ∼ N (0,�) is the random noise with the diagonal
covariance matrix �, and μ is the mean vector.

The PLDA model (4) can be divided into two parts: 1) the
discriminative part Uyyk + μ that is shared by all the obser-
vations of the kth class and describes between-class variation
and 2) the noise part Uzzjk + εjk that is different for indi-
vidual observations and represents within-individual variation.
Since PLDA explicitly characterizes both the class and noise
components, it takes data uncertainty and individual-specific
variation into account, and thus can extract discriminative fea-
tures that may be discarded or considered as less important by
LDA [24].

1) More Probabilistic LDA Variants: Besides PLDA, there
are also some other probabilistic LDA variants. Ioffe [27]
possibly proposed the first probabilistic extension of LDA.
This approach models between- and within-class scatter in
Gaussian distributions, which eventually results in a weighted
form of the classical LDA solution. Ioffe’s probabilistic LDA
assumes that each class can only consist of the same number
of training samples. Such assumption is usually impractical,
and greatly limits the effectiveness and applicability of Ioffe’s
probabilistic LDA.

Yu et al. [28] proposed a supervised PCA method, which
performs discriminant analysis by maximizing the correla-
tion between each observation and its class indicator vector.
Although, it is derived from the probabilistic perspective, the
maximum likelihood solution of this supervised PCA is just
identical to that of the classical LDA. Apart from the above
probabilistic LDA variants, some attempts have also been
made to utilize the probabilistic framework for heterogeneous
face recognition [29] and data restoration [30].

2) Neglected Tensor Structures: All the above-mentioned
LDA variants are designed for vectors only, while many real-
world data such as images and videos are naturally in the
form of tensors rather than vectors. Under the circumstances,
when it comes to dealing with tensorial data, these vector-
based LDAs have to first reshape tensors into vectors, which
breaks the tensor structures. Consequently, they fail to dis-
cover the structural information from tensors, and may lead to
suboptimal results for certain applications [31], [32].

D. Multilinear LDA

To exploit the tensor structures for discriminant analysis,
several MLDA methods have been proposed. According to
different discriminant criteria used in the subspace learning,
they can be grouped into two categories: 1) ratio-based and
2) difference-based MLDAs. For clarity, we introduce them in
2-D cases, where the inputs are matrices.

1) Ratio-Based MLDAs: Let {{Xjk ∈ R
dc×dr }Nk

j=1}K
k=1 be the

training set, where Xjk is the jth matrix input of the kth class.
Ratio-based MLDAs aim at finding multilinear projections
that maximize the ratio of between-class to within-class scat-
ter. For instance, 2DLDA [19] learns two projection matrices
Uc ∈ R

dc×qc and Ur ∈ R
dr×qr , which characterize the column

and row subspaces, respectively. Those projection matrices are
solved iteratively and alternately based on the following scatter
ratio criterion. By fixing Ur, Uc is solved by:

U(2DLDA)
c = arg max

U

tr
(

U	S(MLDA)
Bc

U
)

tr
(

U	S(MLDA)
Wc

U
) (5)

where S(MLDA)
Bc

∈ R
dc×dc and S(MLDA)

Wc
∈ R

dc×dc are
the column-wise between- and within-class scatter matrices,
respectively. The definitions of S(MLDA)

Wc
and S(MLDA)

Bc
are as

follows:

S(MLDA)
Bc

=
K∑

k=1

Nk(Mk − M)UrU	
r (Mk − M)	 (6)

S(MLDA)
Wc

=
∑

jk

(
Xjk − Mk

)
UrU	

r

(
Xjk − Mk

)	 (7)

where M = (1/N)
∑

jk Xjk is the overall mean matrix and

Mk = (1/Nk)
∑Nk

j=1 Xjk is the class mean matrix. Analogous

to LDA, the solution U(2DLDA)
c is given by the eigenvec-

tors of (S(MLDA)
Wc

)−1S(MLDA)
Bc

associated with the qc largest
eigenvalues.

By fixing Uc, the row projection U(2DLDA)
r is solved by

U(2DLDA)
r = arg max

U

tr
(

U	S(MLDA)
Br

U
)

tr
(

U	S(MLDA)
Wr

U
) . (8)

S(MLDA)
Br

∈ R
dr×dr and S(MLDA)

Wr
∈ R

dr×dr are the row-wise
between- and within-class scatter matrices, respectively, whose
definitions are given by

S(MLDA)
Br

=
K∑

k=1

Nk(Mk − M)	UcU	
c (Mk − M) (9)

S(MLDA)
Wr

=
∑

jk

(
Xjk − Mk

)	UcU	
c

(
Xjk − Mk

)
. (10)

Then U(2DLDA)
r is given by the eigenvectors of

(S(MLDA)
Wr

)−1S(MLDA)
Br

associated with the qr largest
eigenvalues.

With the same objective function, DATER [20] generalizes
2DLDA to higher-order cases, which can deal with general
tensors. UMLDA [21] is also designed for general tensors
and employs the ratio-based discriminant criterion, while it
finds each subspace basis (column of Uc and Ur) in a greedy
and successive way. Moreover, UMLDA imposes uncorrelated
constraints on the projection matrices to extract independent
features and reduce the subspace redundancy.

2) Difference-Based MLDAs: Difference-based MLDAs
learn discriminative subspaces by maximizing the differ-
ence between between- and within-class scatter. For instance,
GTDA [22] learns the column and row projections by alter-
nately maximizing the following two objective functions:

U(GTDA)
c = arg max

U
tr
(

U	(
S(MLDA)

Bc
− ξcS(MLDA)

Wc

)
U

)
(11)

U(GTDA)
r = arg max

U
tr
(

U	(
S(MLDA)

Br
− ξrS(MLDA)

Wr

)
U

)
(12)
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where ξc and ξr are the tuning parameters whose val-
ues are heuristically set to the largest eigenvalue of
(S(MLDA)

Wc
)−1S(MLDA)

Bc
and (S(MLDA)

Wr
)−1S(MLDA)

Br
, respectively.

With fixed Ur, the solution U(GTDA)
c is given by the eigen-

vectors of S(MLDA)
Bc

− ξcS(MLDA)
Wc

associated with the qc largest

eigenvalues. The row projection U(GTDA)
r can be solved in a

similar way. Along this line, TR1DA [23] successively finds
each column of Uc and Ur based on the scatter difference cri-
terion, which can be viewed as a difference-based version of
UMLDA without the uncorrelated constraints.

3) Exploited Structural Information: In general, the
performance of LDA is highly dependent on the quality of
the scatter matrices S(LDA)

B and S(LDA)
W . When dealing with

real-world tensors such as whole-brain MRI or fMRI scans, it
is often the case that the number of training samples is much
smaller than that of input features. In this scenario, the estima-
tion of between- and within-class scatter tends to be inaccurate
due to the limited sample size. As a result, the performance
of LDA could be seriously degraded, which is known as the
SSS problem [12], [33]–[35].

By exploiting the tensor structures, MLDAs can extract
discriminative information from the multilinear scatter matri-
ces such as S(MLDA)

Bc
(6) and S(MLDA)

Wc
(7), which have

much smaller sizes and better conditioning than the original
ones (2) and (3). Because of this, MLDAs save much memory
cost for storing the scatter matrices, reduce the parameter size
of LDA from dq for W to dcqc + drqr for Uc and Ur, and
most importantly gain the robustness in estimating between-
and within-class scatter from SSSs.

4) Convergence and Tuning Parameter Issues: One great
limitation of ratio-based MLDAs is that they fail to monoton-
ically increase their objective functions, i.e., the column- and
row-wise scatter ratios (5) and (8), over iterations, and may not
converge properly [14], [36]–[38]. This is because the column-
wise solution for (5) does not necessarily increase the row-
wise scatter ratio (8) and vice versa. Therefore, the results of
ratio-based MLDAs would be unstable during iterations, and
have no convergence guarantee. In contrast, difference-based
MLDAs avoid the convergence problem, since the scatter dif-
ferences (11) and (12) can be monotonically increased in the
alternate optimization procedure. However, they have to intro-
duce the tuning parameters ξc and ξr for controlling the weight
between the between- and within-class scatter, which are often
sensitive and difficult to be well-determined in practice.

III. PROPOSED METHOD

Although, PLDA and MLDA enjoy some benefits over
LDA, they still have their own limitations. This section
presents a probabilistic MLDA for matrix inputs, named as
PRODA. Different from existing MLDAs that employ the scat-
ter ratio or difference, PRODA takes the log-likelihood of a
generative model as the discriminant criterion, where between-
and within-class information is characterized by the variation
of collective and individual latent features, respectively. In this
way, it inherits the benefits of both PLDA and MLDA while
avoiding their limitations.

In the following, PRODA is presented in three stages.

1) We first propose the PRODA model to incorporate the
matrix structures into the probabilistic framework.

2) An EM-type algorithm is then developed for param-
eter estimation to overcome the convergence problem
of MLDAs, where the M-step is further regularized for
better generalization.

3) Finally, we discuss the initialization strategies and ana-
lyze the time complexity of PRODA.

A. PRODA Model

Analogous to the singular value decomposition, we decom-
pose the jth observed matrix of the kth class Xjk into a number
of rank-one matrices as follows:

Xjk =
Py∑

p=1

yk
pcy

pry
p
	 +

Pz∑

q=1

zjk
q cz

qrz
q
	 + Ejk

= Cy diag(yk)R	
y + Cz diag

(
zjk

)
R	

z + Ejk (13)

where yk ∼ N (0, IPy) is the Py-dimensional collective latent
variable, zjk ∼ N (0, IPz) is the Pz-dimensional individual
latent variable, and Ejk ∼ Ndc,dr (0, σ I, σ I) is the random
noise matrix with σ > 0. Cy/z ∈ R

dc×Py/z and Ry/z ∈ R
dr×Py/z

are the collective/individual column and row factor matrices,
respectively.

The PRODA model represents each observation as a linear
combination of Py + Pz rank-one matrices. Among them, Py

of them are discriminative factors that characterize between-
class variation, while the others are nondiscriminative ones
that describe within-individual variation. The coefficients yk

and zjk serve as the low-dimensional latent representations in
the discriminative and individual subspaces, respectively. yk

can be viewed as the class identity, and is shared by all the
observations of the kth class. On the other hand, different zjks
are independent of each other, and can be viewed as structured
noise.

Besides the capability of capturing discriminative features
and nondiscriminative noise, there is another key benefit can
be obtained by representing each observation as a number of
rank-one matrices. Specifically, the PRODA model (13) can
naturally group the collective and individual rank-one matrices
together in a joint form as follows:

Xjk = [
Cy, Cz

]
[

diag(yk) 0
0 diag(zjk)

]
[
Ry, Rz

]	 + Ejk

= C diag
(
fjk

)
R	 + Ejk (14)

where fjk = [y	
k , z	

jk]	 is the joint latent variable, C = [Cy, Cz]
and R = [Ry, Rz] are the column and row factor matrices,
respectively. By combining the collective and individual fac-
tors in C and R, such joint form not only preserves the spatial
structures of Xjk but also greatly facilitates the subsequent
parameter estimation, leading to closed-form solutions with
guaranteed convergence. Fig. 1 gives the graphical model for
PRODA.

Armed with the PRODA model (14), we can obtain the
conditional distribution p(Xjk|fjk) as follows:

Xjk

∣
∣
∣fjk ∼ Ndc,dr

(
C diag

(
fjk

)
R	, σ I, σ I

)
. (15)
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Fig. 1. Graphical model for PRODA.

Using the properties of the column-wise Kronecker prod-
uct, (15) can be rewritten in the following vector form:

xjk|fjk ∼ N
(

Wfjk, σ
2I

)
(16)

where xjk = vec(Xjk), Wy = Ry � Cy, Wz = Rz � Cz,
W = R � C = [Wy, Wz]. In the following derivation, we
need both the vector and matrix forms of the conditional dis-
tribution to obtain tractable formulations for the log-likelihood
and posterior expectations.

Given the training set {{Xjk}Nk
j=1}K

k=1, our aim is to find
the model parameter set θ = {C, R, σ 2} that maximizes the
following log-likelihood function:

L(θ) =
∑

jk

ln p
(
Xjk, fjk

)

= −
∑

jk

[
dcdr

2
ln σ 2 + 1

2
f	jkfjk + 1

2σ 2

∥
∥
∥Xjk

− C diag(fjk)R	
∥
∥
∥

2

F

]

+ const. (17)

This can be achieved by learning the joint latent variable
fjk and the model parameters θ sequentially under the EM
framework.

1) Comparison With PLDA: Both PLDA and PRODA
construct a generative model to characterize collective and
individual variation. However, PRODA achieves this by repre-
senting each observation as a linear combination of rank-one
matrices rather than vectors. This leads to the following
advantages over PLDA.

1) PRODA can preserve the spatial structures of the
observed matrices, which could be utilized to improve
the performance of discriminant analysis.

2) PRODA has compact subspace representations with
fewer model parameters to be estimated. Specifically,
PLDA has dcdr(Py + Pz) parameters for Wy and Wz,
while PRODA has (dc +dr)(Py +Pz) ones for C and R.

3) The reduced parameter size (model complexity) in turn
could improve the robustness of PRODA in the param-
eter estimation with SSSs.

2) Comparison With MLDAs: To the best of our knowledge,
PRODA is the first bilinear probabilistic LDA, which takes
advantages of not only the matrix structures for robustness
against the SSS problem but also the probabilistic framework
for compact and flexible subspace representations. In addition,
the objective function of PRODA is the log-likelihood (17)

rather than the scatter ratio or difference. As will be seen in the
next section, it can be monotonically increased under the EM
framework, providing PRODA with guaranteed convergence.
In contrast, ratio-based MLDAs such as DATER and UMLDA
fail to monotonically increase the scatter ratio over iterations,
and thus have no convergence guarantee. Although difference-
based MLDAs such as GTDA and TR1DA avoid the con-
vergence problem, they involve additional tuning parameters,
which are often sensitive and difficult to be well-determined
in practice.

B. Parameter Estimation for PRODA

This section develops an EM-type algorithm for estimat-
ing θ , which has guaranteed convergence without introducing
additional tuning parameters. Since C and R are coupled
together, it is difficult to optimize them simultaneously.
We solve this problem by using the expectation-conditional
maximization (ECM) approach [39]. Our ECM algorithm opti-
mizes C and R conditionally, and consists of two stages: the
E-step and CM-step.

1) E-Step: In the E-step, the joint latent variable fjk is
optimized with respect to L(θ) given θ . The solution turns
out to be the expectations of fjk in terms of the posterior
p(fjk|Xk), where Xk = [x1k, . . . , xNkk]. Since the collec-
tive latent variable yk is determined by all the observations
of the kth class while the individual latent variable zjk is
only related to the corresponding observation xjk, we decom-
pose the posterior p(fjk|Xk) into two factors: p(fjk|Xk) =
∏Nk

j=1 p(zjk|yk, xjk)p(yk|Xk) and derive them separately.
Outer Posterior: Given yk, the individual latent variables zjk

(j = 1, . . . , Nk) of the kth class are conditionally independent
of each other. Applying the Gaussian properties, we can obtain
the outer posterior p(zjk|xjk, yk) as follows:

zjk|xjk, yk ∼ N
(

MzW	
z

(
xjk − Wyyk

)
, σ 2Mz

)
(18)

where Mz = (W	
z Wz + σ 2I)−1.

Inner Posterior: According to Bayes’ rule, we have

p(yk|Xk) = p(Xk, yk)

p(Xk)
= p(Xk, yk, Zk)

p(Zk|Xk, yk)p(Xk)

=
Nk∏

j=1

p
(
xjk|fjk

)
p(yk)p

(
zjk

)

p
(
zjk|xjk, yk

)
p(xjk)

(19)

where Zk = [z1k, . . . , zNkk].
Substituting (18) and (16) into (19) and taking terms that are

independent of yk as a constant, the inner posterior p(yk|Xk)

can be derived by completing the quadratic form of a Gaussian
distribution, leading to

yk|Xk ∼ N
(

M(k)
y W	

y �x̄k, σ
2M(k)

y

)
(20)

where x̄k = ∑Nk
j=1 xjk, � = I − WzMzW	

z and M(k)
y =

(NkW	
y �Wy + σ 2I)−1.

With the above results, we can calculate the expectations
〈fjk〉 and 〈fjkf	jk〉 in terms of p(fjk|Xk) as follows:

〈fjk〉 =
[
〈yk〉	, 〈zjk〉	

]	
(21)
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〈fjkf	jk〉 =
[

〈yky	
k 〉 〈ykz	

jk〉
〈zjky	

k 〉 〈zjkz	
jk〉

]

(22)

where

〈yk〉 = E
[
yk

]
yk|Xk

= M(k)
y W	

y �x̄k

〈zjk〉 = E

[
E

[
zjk

]
zjk|xjk,yk

]

yk|Xk

= MzW	
z

(
xjk − Wy〈yk〉

)

〈yky	
k 〉 = σ 2M(k)

y + 〈yk〉〈yk〉	
〈zjky	

k 〉 = MzW	
z

(
xjk〈yk〉	 − Wy〈yky	

k 〉
)

〈zjkz	
jk〉 = σ 2Mz + MzW	

z HijWzMz

Hij = xjkx	
jk + Wy〈yky	

k 〉W	
y

− xjk〈yk〉	W	
y − Wy〈yk〉x	

jk .

2) CM-Step: In the CM-step, we alternately and condi-
tionally estimate the column and row factor matrices by
maximizing the log-likelihood function (17) with respect to
C (or R) with the other fixed.

With R fixed, the optimized C is given by

C̃ =
⎡

⎣
∑

jk

XjkR diag
(〈fjk〉

)
⎤

⎦

⎡

⎣
∑

jk

〈fjkf	jk〉 � R	R

⎤

⎦

−1

. (23)

After obtaining C̃, R can be solved similarly as follows:

R̃ =
⎡

⎣
∑

jk

X	
jkC̃ diag

(〈fjk〉
)
⎤

⎦

⎡

⎣
∑

jk

〈fjkf	jk〉 � C̃	C̃

⎤

⎦

−1

. (24)

Finally, by maximizing (17) with respect to σ 2, the optimized
noise variance can be obtained as follows:

σ̃ 2 = 1

Ndcdr

∑

jk

{
tr
(

X	
jkXjk

)
− tr

(
X	

jkC̃ diag
(〈fjk〉

)
R̃	)}

.

(25)

3) Regularization on the CM-Step: Apart from utilizing the
matrix structures and probabilistic modeling, we also intro-
duce regularization in the CM-step for better generalization
and more robustness against the SSS problem. Specifically,
a multiple of the identity matrix γ I is added to the second-
order sample moment

∑
jk〈fjkf	jk〉 in (23) and (24), leading to

the regularized updates for C and R as follows:

C̃ =
∑

jk

XjkR diag
(〈fjk〉

)[
F � R	R

]−1
(26)

R̃ =
∑

jk

X	
jkC̃ diag

(〈fjk〉
)[

F � C̃	C̃
]−1

(27)

where F = γ I + ∑
jk〈fjkf	jk〉, and γ is the regularization

parameter. The regularized terms stabilize the matrix inverses
in (23) and (24), and consequently improve the generalization
ability of PRODA.

By alternating between the E-step and CM-step until
convergence, we can obtain the MLE solutions for θ .
Algorithm 1 summarizes the ECM algorithm for PRODA. It
can be proved that the ECM algorithm always increases the

Algorithm 1 ECM Algorithm for PRODA

1: Input: The training set {{Xjk}Nk
j=1}K

k=1, the number of class
features Py, the number of individual features Pz, and the
regularization parameter γ .

2: Initialize C, R, and σ 2 randomly or in other ways.
3: Normalize each column of C and R to have unit norm.
4: repeat
5: Compute the expectations 〈fjk〉 and 〈fjkf	jk〉 via (21) and

(22), respectively.
6: Update C, R, and σ 2 via (26), (27), and (25),

respectively.
7: until convergence.
8: Output: C, R, and σ 2.

log-likelihood function (17) and is guaranteed to converge to
local optima [39].

C. Initialization and Prediction

1) Initialization: The parameters θ = {C, R, σ 2} of
PRODA can be initialized randomly, so that unnecessary
biases would not be introduced at the beginning of the
iteration. Then, the columns of C and R are normalized to
have unit length so that each initialized latent factor contributes
equally to the PRODA model. Recall that C = [Cy, Cz] and
R = [Ry, Rz] are constructed by the collective and individ-
ual factors. As the discriminative factor matrices, Cy and Ry

are expected to project data of the same class close together
while those of different classes apart. Therefore, it is also rea-
sonable to initialize Cy and Ry by using the learned projections
of nonprobabilistic MLDAs such as TR1DA or UMLDA. On
the other hand, since Cz and Rz are responsible for capturing
the structured noise, they should still be initialized randomly
to maintain noninformative.

2) Prediction: With the trained PRODA model, we can
obtain the low-dimensional features of a new coming obser-
vation X by computing the expectation of the collective latent
variable y in terms of the posterior distribution p(y|vec(X)).
From (16), we can integrate out z and obtain

vec(X)|y ∼ N
(

Wyy, WzW	
z + σ 2I

)
. (28)

Then the predictive posterior distribution can be readily
derived as follows:

y|vec(X) ∼ N
(

�−1W	
z

(
WzW	

z + σ 2I
)−1

vec(X),�−1
)

(29)

where � = I + W	
y (WzW	

z + σ 2I)−1Wy. Finally, the desired
latent features of X is given by the expectation E[y|vec(X)] =
�−1W	

z (WzW	
z + σ 2I)−1vec(X).

D. Time Complexity Analysis

Since both PLDA and PRODA are under the EM frame-
work, they have comparable time complexity. For simplicity,
let D = dcdr be the number of input features, and P = Py = Pz

be the number of extracted features. The E-step of PRODA
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TABLE I
DETAILED DESCRIPTIONS OF PRODA AND THE COMPETING METHODS

takes O(NDP2) for computing the expectations 〈fjk〉 and
〈fjkf	jk〉. The M-step takes O(NDP) for summing up the statis-
tics, and O(P3) for matrix inverse. Therefore, the overall time
complexity of PRODA is dominated by O(TNDP2), where T
is the number of iterations.

Please note that classical LDA takes O(ND2) for computing
the scatter matrices, and O(D3) for the generalized eigenvalue
decomposition. Since P < D, each PRODA iteration is not
much slower than LDA, provided that P is not too large. As
will be shown in the next section, PRODA usually converges
within a few iterations. Therefore, the overall computational
cost of PRODA is acceptable for extracting a moderate number
of features. For large scale problems, stochastic inference with
mini-batch updates can be used to improve the efficiency of
PRODA, which could be a future work.

IV. EXPERIMENTS

This section evaluates the performance of PRODA in super-
vised subspace learning, where a set of experiments are
conducted to achieve the following two objectives.

1) Demonstrate the effectiveness of PRODA on classifica-
tion tasks by comparing against LDA and its state-of-
the-art extensions.

2) Investigate the behavior and properties of PRODA under
different configurations.

A. Experimental Settings

PRODA is compared against LDA and its linear, multi-
linear, and probabilistic variants. Table I gives the detailed
descriptions of PRODA and the competing methods.

1) Number of Extracted Features: For nonprobabilis-
tic LDAs: LDA, PCA+LDA, RLDA, NLDA, ULDA, and
MULDA, up to K − 1 features are tested, which is the max-
imum number can be extracted. For MLDAs: DATER and
GTDA, up to 30 × 30 = 900 features are tested. TR1DA is
tested up to 500 features. UMLDA is tested up to 35 features
by following the settings in [21]. For probabilistic methods:
PLDA and PRODA, we set Py = Pz = 500 for the collec-
tive and individual features, respectively. We have verified that
extracting more features does not lead to better results with
statistical significance for the competing methods.

2) Initialization: DATER, GTDA, TR1DA, UMLDA,
PLDA, and PRODA are iterative methods and require initial-
ization. DATER and GTDA are initialized by pseudo identity
matrices. TR1DA and UMLDA are initialized uniformly [21],
and PLDA is initialized randomly. These settings lead to the
best results for the corresponding methods in our experiments.
Unless otherwise specified, PRODA is initialized randomly.

3) Number of Iterations and Convergence Criteria: We set
the number of iterations for DATER and GTDA to be 1, which
results in the best performance in our experiments. TR1DA
and UMLDA are tested with ten iterations by following the
settings in [21]. For PLDA and PRODA, we iterate them until
300 iterations or the relative change of the log-likelihood is
smaller than 10−4.

4) Tuning Parameters: Originally, RLDA, TR1DA,
UMLDA, and PRODA have tuning parameters to be deter-
mined. For fair comparison, the same regularization strategy
of PRODA is also applied to PLDA, which introduces a
regularization parameter for PLDA. We test these methods by
selecting all the parameters from {10−5, 10−4, . . . , 105}, and
report their best results.

B. Face Recognition

1) Datasets: Two face datasets are utilized. The first is the
UMIST database [44], which consists of 575 images of 20
subjects. Images of each subject are taken in various poses
from profile to frontal views with a neutral expression. The
second one is the CMU PIE database [45]. It consists of 41 368
images of 68 subjects with four expressions, in 13 poses, and
under 43 illumination conditions. We conduct the experiments
on a subset of the CMU PIE database by selecting face images
in seven poses (C05, C07, C09, C27, C29, C37, C11) and
under 21 illumination conditions (02 to 22). This results in
9987 images in total, and around 147 samples per subject. All
face images are normalized to 32 × 32 gray-level pixels.

2) Experimental Setup: Each dataset is randomly parti-
tioned into training and test sets, leading to L images per
subject for training and the rest for test. We extract low-
dimensional features via each of the above-mentioned method,
and then sort the extracted features in descending order by
their Fisher scores [46]. After feature extraction, we follow the
same settings of the competing methods [20]–[24] to use the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

TABLE II
RECOGNITION RATES (MEAN±STD.%) ON THE UMIST DATASET (BEST, SECOND BEST, AND ∗ STATISTICALLY COMPARABLE)

TABLE III
RECOGNITION RATES (MEAN±STD.%) ON THE CMU PIE DATASET (BEST, SECOND BEST, AND ∗ STATISTICALLY COMPARABLE)

nearest neighbor classifier for classification, which is trained
with different numbers of the extracted features (up to the
maximums). We conduct experiments over ten such random
partitions, and report the best average recognition rates with
the standard deviations for each method. The best results are
highlighted in bold font, and the second best ones are under-
lined. We also mark the comparable results with an asterisk ∗
based on a t-test with a p-value of 0.06.

3) Result Analysis: Table II shows the recognition rates on
the UMIST dataset. Most nonprobabilistic linear extensions of
LDA get significantly better results than the baseline, among
which RLDA is the best method. On average, all MLDAs
except TR1DA achieve comparable or even better performance
than RLDA, which indicates that utilizing the matrix structures
can improve the performance of discriminant analysis.

UMLDA and PRODA are the best two methods on the
UMIST dataset, which achieve comparably good performance
except for L = 3. This could be attributed to both the
exploited matrix structures and their individual properties
preserved in the extracted features. Specifically, UMLDA
imposes uncorrelated constraints to extract independent fea-
tures, while PRODA learns a flexible generative model to
capture generic data characteristics.

Table III shows the recognition rates on the CMU PIE
dataset. PRODA achieves the best performance with statistical
significance in most cases. Specifically, it outperforms the sec-
ond best results 2.47% on average with L = 2 ∼ 7, and is

more advantageous with small training sizes (L = 2, 3, 4).
This implies that PRODA is more robust than the compet-
ing methods against the SSS problem. Although PRODA is
worse than PLDA by 0.58% on average with L = 10, 40, it
still achieves reasonably a good performance, and consistently
outperforms other MLDAs. It is worth noting that NLDA does
not work on the CMU PIE dataset with L = 40, since the null
space of the within-class scatter matrix becomes noninforma-
tive and only contains zero vectors when the training size is
large.

Unlike the experiments on the UMIST dataset, UMLDA
fails to perform well on the CMU PIE dataset. Such differ-
ence of the UMLDA performance could be attributed to the
uncorrelated constraints imposed by UMLDA and the differ-
ent characteristics of the two datasets. The UMIST dataset
consists of face images covering a range of poses from 20 sub-
jects (classes), where the samples of each class have strong
correlations. On the other hand, the CMU PIE dataset is more
challenging, where face images are from 68 subjects and under
both pose and illumination variations. Due to the uncorrelated
constraints, UMLDA is effective in extracting the discrimina-
tive features from the UMIST dataset. However, when it comes
to the CMU PIE dataset, the uncorrelated constraints could
be too restricted to characterize both pose and illumination
variations, leading to relatively poor results.

For the both datasets, ratio-based MLDAs such as DATER
and UMLDA outperform the difference-based ones such as
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(a) (b) (c)

Fig. 2. Sketch recognition rates with T training photographs (PvS) on the CUHK student dataset. (a) T = 30. (b) T = 90. (c) T = 150.

(a) (b) (c)

Fig. 3. photograph recognition rates with T training sketches (SvP) on the CUHK student dataset. (a) T = 30. (b) T = 90. (c) T = 150.

GTDA and TR1DA in most cases. This indicates that the
good convergence property of GTDA and TR1DA may come
at the expense of their feature discriminability. On the other
hand, although DATER and UMLDA perform better than their
difference-based counterparts, they have no convergence guar-
antee, and may test different iteration numbers to find the best
results. In contrast, PRODA overcomes the limitations of both
the ratio- and difference-based MLDAs by learning matrix
subspaces under the probabilistic framework, leading to the
best performance and the convergence guarantee.

To verify whether the probabilistic framework itself helps
classification, we develop a degenerated version of PRODA
(denoted by PRODA*), where the posterior expectation (22)
is replaced by its point estimation during the ECM updates.
To be more specific, 〈ykyk

	〉 and 〈zjkz	
jk〉 are replaced by

〈yk〉〈yk〉	 and 〈zjk〉〈zjk〉	, respectively. Due to this modi-
fication, the E-step of PRODA* ignores some uncertainty
information captured by the probabilistic framework, i.e., the
covariance matrices σ 2M(k)

y and σ 2Mz. We test PRODA* on
the UMIST and CMU PIE datasets. The experimental results
show that PRODA* achieves almost the same performance
with PRODA for the UMIST dataset, whereas it is worse
than PRODA by 1.49% on average for the CMU PIE dataset.
This indicates that by estimating the covariance matrices,
the probabilistic framework can improve the classification
performance.

C. Facial Photograph-Sketch Matching

1) Dataset: The Chinese University of Hong Kong
(CUHK) student database [47] is tested, which consists of
188 subjects. Each subject has a facial photograph and a

corresponding sketch of the photograph in the frontal pose,
under the normal illumination condition, and with the neu-
tral expression. Each image is resized to 40 × 32 gray-level
pixels.

2) Experimental Setup: We randomly select T =
30, 90, 150 subjects from the CUHK student dataset. The task
is to recognize the sketches (or photographs) of each subject
by observing the others, leading to T photographs/sketches for
training and the corresponding T sketches/photographs for test.
For each T , we conduct such experiments ten times, and report
the average recognition rates. This is both a single-sample
and heterogeneous classification problem, making face recog-
nition more challenging. As a consequence, LDA, PCA+LDA,
NLDA, ULDA, MULDA, and UMLDA are inapplicable due
to the badly ill-conditioned within-class scatter matrix. We test
both the random and TR1DA-based schemes in Section III-C
for initializing PRODA, which are indicated as PRODA1 and
PRODA2, respectively.

3) Result Analysis: Figs. 2 and 3 show the recognition rates
on the CUHK student dataset for the training photograph ver-
sus testing sketch (PvS) and training sketch versus testing
photograph (SvP) cases, respectively. As can be seen, non-
probabilistic LDAs fail to perform well, while the probabilistic
ones obtain significantly better results. Since each subject only
has a single training sample, it is almost impossible to estimate
the between- and within-class scatter accurately. This is proba-
bly responsible for the poor results of RLDA, DATER, GTDA,
and TR1DA, since their performance is highly dependent on
the quality of the scatter matrices. On the other hand, PLDA
and PRODA are more robust against the so-called “single sam-
ple per person” problem, because they implicitly model the
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(a) (b) (c)

Fig. 4. Average log-likelihood of PRODA at each iteration. (a) UMIST. (b) CMU PIE. (c) CUHK with T = 150.

(a) (b) (c)

Fig. 5. Recognition rates of PRODA in different settings of the regularization parameter γ . (a) UMIST. (b) CMU PIE. (c) CUHK with T = 150.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Recognition rates of PRODA as Py increases with Pz fixed. (a) UMIST with L = 2. (b) CMU PIE with L = 2. (c) CUHK PvS with T = 150.
(d) UMIST with L = 5. (e) CMU PIE with L = 5. (f) CUHK SvP with T = 150.

between- and within-class information under the probabilis-
tic framework rather than explicitly manipulate the inaccurate
scatter matrices.

Although both PLDA and PRODA take advantage of the
probabilistic framework, PRODA consistently outperforms
PLDA except the PvS case with T = 90. This demonstrates
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Recognition rates of PRODA as Pz increases with Py fixed. (a) UMIST with L = 2. (b) CMU PIE with L = 2. (c) CUHK PvS with T = 150.
(d) UMIST with L = 5. (e) CMU PIE with L = 5. (f) CUHK SvP with T = 150.

the effectiveness of the matrix structures in improving the
performance of subspace learning. In addition, since PRODA
has less model complexity with fewer parameters, the esti-
mation of PRODA with limited sample sizes should be more
robust than that of PLDA. This may also contribute to the good
performance of PRODA on the CUHK student dataset. It is
worth noting that although TR1DA only obtains poor results,
it seems to be a good initialization for PRODA, which leads
to great improvements over the randomly initialized PRODA.
This implies that data-dependent initializations based on other
MLDAs can help PRODA to escape bad local optima, which
would be more preferable than the random scheme especially
when there is only a small number of training samples.

D. Convergence and Parameter Sensitivity

This section empirically studies the convergence property
and the parameter sensitivity of PRODA.

1) Convergence: The convergence property of PRODA is
first tested with Py = Pz = 500, where we set γ = 100
for the UMIST and CMU PIE datasets, and γ = 10 for the
CUHK student dataset. Fig. 4 shows the average log-likelihood
of PRODA at each iteration on the UMIST, CMU PIE, and
CUHK student datasets, respectively. PRODA monotonically
increases the log-likelihood and converges in a few iterations,
which supports its theoretical convergence guarantee.

2) Regularization Parameter γ : We then study how the
performance of PRODA changes with the regularization
parameter γ by fixing Py = Pz = 500. As can be seen in
Fig. 5, the imposed regularization in the CM-step effectively
improves the performance of PRODA. In addition, the best
choice of γ seems to be around 50–100 for all the involved

datasets in different settings. This suggests that the best γ is
not very sensitive to different training settings.

3) Collective and Individual Feature Numbers Py and Pz:
Finally, with the same γ settings in the convergence study, the
effects of Py and Pz are investigated. Fig. 6 shows the recog-
nition rates of PRODA as Py increases with Pz fixed. With a
fixed Pz, the recognition rates of PRODA become higher as
Py increases, which suggests that a relatively large Py is desir-
able for PRODA. This is expectable because there are more
and more features available for capturing the discriminative
information as Py increases.

Fig. 7 shows the recognition rates of PRODA as Pz increases
with Py fixed. PRODA does not perform well when Pz = 0.
This indicates that it is necessary and important to learn both
the collective and individual subspaces for extracting more dis-
criminative features. Increasing Pz improves the performance
of PRODA at the beginning, while it no longer leads to bet-
ter results after Pz > 300. This suggests that a medium Pz is
enough for PRODA to get good results.

V. CONCLUSION

We have proposed PRODA for learning discriminative sub-
spaces from matrices. By representing each observation as
a linear combination of collective and individual rank-one
matrices, PRODA achieves the following desirable properties.

1) It is flexible in capturing discriminative features and
nondiscriminant noise.

2) It exploits the matrix structures to obtain compact sub-
space representations, reduced model complexity, and
robustness against the SSS problem.

3) It is guaranteed to converge to local optima without
introducing additional tuning parameters.
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These properties give PRODA the edge over both probabilistic
and MLDA extensions. Experimental results on three real-
world datasets have shown the superiority of PRODA to the
competing methods.

Beyond PRODA, there are several sensible future research
directions. For example, PRODA can be extended to nonlin-
ear versions by mixing a set of PRODA models or employing
Gaussian processes. In some applications, it is useful to impose
uncorrelated or sparse constraints on subspace bases for better
interpretation and less feature redundancy. This may motivate
uncorrelated or sparse extensions of PRODA, which could be
developed by introducing certain priors and using Bayesian
nonparametric techniques. In addition, semi-supervised exten-
sions of PRODA by making use of unlabeled data as in [48]
could also be an interesting future work.
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