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A novel semisupervised dimensionality reduction method named Semisupervised Tangent Space Discriminant Analysis (STSD) is
presented, where we assume that data can be well characterized by a linear function on the underlying manifold. For this purpose,
a new regularizer using tangent spaces is developed, which not only can capture the local manifold structure from both labeled and
unlabeled data, but also has the complementarity with the Laplacian regularizer. Furthermore, STSD has an analytic form of the
global optimal solution which can be computed by solving a generalized eigenvalue problem. To perform nonlinear dimensionality
reduction and process structured data, a kernel extension of our method is also presented. Experimental results on multiple real-
world data sets demonstrate the effectiveness of the proposed method.

1. Introduction

Dimensionality reduction is to find a low-dimensional rep-
resentation of high-dimensional data, while preserving data
information as much as possible. Processing data in the low-
dimensional space can reduce computational cost and sup-
press noises. Provided that dimensionality reduction is per-
formed appropriately, the discovered low-dimensional rep-
resentation of data will benefit subsequent tasks, for exam-
ple, classification, clustering, and data visualization. Clas-
sical dimensionality reduction methods include supervised
approaches like linear discriminant analysis (LDA) [1] and
unsupervised ones such as principal component analysis
(PCA) [2].

LDA is a supervised dimensionality reduction method.
It finds a subspace in which the data points from different
classes are projected far away from each other, while the
data points belonging to the same class are projected as close
as possible. One merit of LDA is that LDA can extract the
discriminative information of data, which is crucial for classi-
fication. Due to its effectiveness, LDA is widely used in many
applications, for example, bankruptcy prediction, face recog-
nition, and data mining. However, LDA may get undesirable
results when the labeled examples used for learning are not

sufficient, because the between-class scatter and the within-
class scatter of data could be estimated inaccurately.

PCA is a representative of unsupervised dimensionality
reduction methods. It seeks a set of orthogonal projection
directions along which the sum of the variances of data is
maximized. PCA is a common data preprocessing technique
to find a low-dimensional representation of high-dimen-
sional data. In order to meet the requirements of different
applications, many unsupervised dimensionality reduction
methods have been proposed, such as Laplacian Eigen-
maps [3], Hessian Eigenmaps [4], Locally Linear Embedding
[5], Locality Preserving Projections [6], and Local Tangent
Space Alignment [7]. Although it is shown that unsupervised
approaches work well in many applications, they may not be
the best choices for some learning scenarios because theymay
fail to capture the discriminative structure from data.

Inmany real-world applications, only limited labeled data
can be accessed while a large number of unlabeled data are
available. In this case, it is reasonable to perform semisuper-
vised learning which can utilize both labeled and unlabeled
data. Recently, several semisupervised dimensionality reduc-
tion methods have been proposed, for example, Semisu-
pervised Discriminant Analysis (SDA) [8], Semisupervised
DiscriminantAnalysis (SSDA)with path-based similarity [9],
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and Semisupervised Local Fisher Discriminant Analysis
(SELF) [10]. SDA aims to find a transformation matrix fol-
lowing the criterion of LDA while imposing a smoothness
penalty on a graphwhich is built to exploit the local geometry
of the underlying manifold. Similarly, SSDA also builds a
graph for semisupervised learning. However, the graph is
constructed using a path-based similarity measure to capture
the global structure of data. SELF combines the ideas of local
LDA [11] and PCA so that it can integrate the information
brought by both labeled and unlabeled data.

Although all of these methods have their own advantages
in semisupervised learning, the essential strategy of many
of them for utilizing unlabeled data relies on the Laplacian
regularization. In this paper, we present a novel method
named Semisupervised Tangent SpaceDiscriminant Analysis
(STSD) for semisupervised dimensionality reduction, which
can reflect the discriminant information and a specific man-
ifold structure from both labeled and unlabeled data. Unlike
adopting the Laplacian based regularizer, we develop a new
regularization term which can discover the linearity of the
local manifold structure of data. Specifically, by introducing
tangent spaces we represent the local geometry at each data
point as a linear function and make the change of such
functions as smooth as possible. This means that STSD
appeals to a linear function on the manifold. In addition,
the objective function of STSD can be optimized analytically
through solving a generalized eigenvalue problem.

2. Preliminaries

Consider a data set consisting of ℓ examples and labels,
{(x
𝑖
, 𝑦
𝑖
)}
ℓ

𝑖=1
, where x

𝑖
∈ R𝑑 denotes a 𝑑-dimensional example,

𝑦
𝑖

∈ {1, 2, . . . , 𝐶} denotes the class label corresponding
to x
𝑖
, and 𝐶 is the total number of classes. LDA seeks

a transformation t such that the between-class scatter is
maximized and the within-class scatter is minimized [1]. The
objective function of LDA can be written as

t(LDA) = arg max
t

t⊤𝑆
𝑏
t

t⊤𝑆
𝑤
t
, (1)

where ⊤ denotes the transpose of a matrix or a vector, 𝑆
𝑏
is

the between-class scatter matrix, and 𝑆
𝑤
is the within-class

scatter matrix. The definitions of 𝑆
𝑏
and 𝑆
𝑤
are

𝑆
𝑏
=

𝐶

∑

𝑐=1

ℓ
𝑐
(𝜇
𝑐
− 𝜇) (𝜇

𝑐
− 𝜇)
⊤
, (2)

𝑆
𝑤
=

𝐶

∑

𝑐=1

∑

{𝑖|𝑦𝑖=𝑐}

(x
𝑖
− 𝜇
𝑐
) (x
𝑖
− 𝜇
𝑐
)
⊤
, (3)

where ℓ
𝑐
is the number of examples from the 𝑐th class,

𝜇 = (1/ℓ)∑
ℓ

𝑖=1
x
𝑖
is the mean of all the examples, and 𝜇

𝑐
=

(1/ℓ
𝑐
) ∑
{𝑖|𝑦𝑖=𝑐}

x
𝑖
is the mean of the examples from class 𝑐.

Define the total scatter matrix as

𝑆
𝑡
=

ℓ

∑

𝑖=1

(x
𝑖
− 𝜇) (x

𝑖
− 𝜇)
⊤
. (4)

It is well known that 𝑆
𝑡
= 𝑆
𝑏
+ 𝑆
𝑤
[1] and (1) is equivalent to

t(LDA) = arg max
t

t⊤𝑆
𝑏
t

t⊤𝑆
𝑡
t
. (5)

The solution of (5) can be readily obtained by solving a
generalized eigenvalue problem: 𝑆

𝑏
t = 𝜆𝑆

𝑡
t. It should be

noted that the rank of the between-class scatter matrix 𝑆
𝑏

is at most 𝐶 − 1, and thus we can obtain at most 𝐶 − 1

meaningful eigenvectors with respect to nonzero eigenvalues.
This implies that LDA can project data into a space whose
dimensionality is at most 𝐶 − 1.

In practice, we usually impose a regularizer on (5) to
obtain amore stable solution.Then the optimization problem
becomes

max
t

t⊤𝑆
𝑏
t

t⊤𝑆
𝑡
t + 𝛽𝑅 (t)

, (6)

where 𝑅(t) denotes the imposed regularizer and 𝛽 is a trade-
off parameter. When we use the Tikhonov regularizer, that is,
𝑅(t) = t⊤t, the optimization problem is usually referred to as
Regularized Discriminant Analysis (RDA) [12].

3. Semisupervised Tangent Space
Discriminant Analysis

As a supervised method, LDA has no ability to extract infor-
mation from unlabeled data. Motivated by Tangent Space
Intrinsic Manifold Regularization (TSIMR) [13], we develop
a novel regularizer to capture the manifold structure of both
labeled andunlabeled data.Utilizing this regularizer, the LDA
model can be extended to a semisupervised one following the
regularization framework.Then we will first derive our novel
regularizer for semisupervised learning and then present
our Semisupervised Tangent Space Discriminant Analysis
(STSD) algorithm as well as its kernel extension.

3.1.The Regularizer for Semisupervised Dimensionality Reduc-
tion. TSIMR [13] is a regularizationmethod for unsupervised
dimensionality reduction, which is intrinsic to data manifold
and favors a linear function on the manifold. Inspired by
TSIMR, we employ tangent spaces to represent the local
geometry of data. Suppose that the data are sampled from
an 𝑚-dimensional smooth manifold M in a 𝑑-dimensional
space. LetTzM denote the tangent space attached to z, where
z ∈ M is a fixed data point on the M. Using the first-order
Taylor expansion at z, any function𝑓 defined on themanifold
M can be expressed as

𝑓 (x) = 𝑓 (z) + w⊤z uz (x) + 𝑂 (‖x − z‖2) , (7)

where x ∈ R𝑑 is a 𝑑-dimensional data point and uz(x) =

𝑇
⊤

z (x−z) is an𝑚-dimensional tangent vector which gives the
𝑚-dimensional representation of x in TzM. 𝑇z is a 𝑑 × 𝑚

matrix formed by the orthonormal bases ofTzM, which can
be estimated through local PCA, that is, performing standard
PCA on the neighborhood of z. wz is an 𝑚-dimensional
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vector representing the directional derivative of 𝑓 at z with
respect to uz(x) on the manifoldM.

Consider a transformation t ∈ R𝑑 which can map the 𝑑-
dimensional data to a one-dimensional embedding.Then the
embedding of x can be expressed as 𝑓(x) = t⊤x. If there are
two data points z and z󸀠 that have a small Euclidean distance,
by using the first-order Taylor expansion at z󸀠 and z, the
embeddings 𝑓(z) and 𝑓(z󸀠) can be represented as

𝑓 (z) = 𝑓 (z󸀠) + w⊤z󸀠uz󸀠 (z) + 𝑂 (
󵄩󵄩󵄩󵄩󵄩
z − z󸀠󵄩󵄩󵄩󵄩󵄩

2

) , (8)

𝑓 (z󸀠) = 𝑓 (z) + w⊤z uz (z
󸀠
) + 𝑂(

󵄩󵄩󵄩󵄩󵄩
z󸀠 − z󵄩󵄩󵄩󵄩󵄩

2

) . (9)

Suppose that the data can be well characterized by a linear
function on the underlyingmanifoldM.Then the remainders
in (8) and (9) can be omitted.

Substituting 𝑓(x) = t⊤x into (8), we have

t⊤z ≈ t⊤z󸀠 + w⊤z󸀠𝑇
⊤

z󸀠 (z − z󸀠) . (10)

Furthermore, by substituting (9) into (8), we obtain

(𝑇z󸀠wz󸀠 − 𝑇zwz)
⊤
(z − z󸀠) ≈ 0, (11)

which naturally leads to

𝑇zwz ≈ 𝑇z󸀠wz󸀠 . (12)

Since 𝑇z is formed by the orthonormal bases of TzM, it
satisfies𝑇⊤z 𝑇z = 𝐼

(𝑚×𝑚)
for all z, where 𝐼

(𝑚×𝑚)
is an 𝑚-dimen-

sional identitymatrix.We canmultiply both sides of (12) with
𝑇
⊤

z ; then (12) becomes to

wz ≈ 𝑇
⊤

z 𝑇z󸀠wz󸀠 . (13)

Armed with the above results, we can formulate our
regularizer for semisupervised dimensionality reduction.
Consider data x

𝑖
∈ 𝑋 (𝑖 = 1, . . . , 𝑛) sampled from a function

𝑓 along the manifold M. Since every example x
𝑖
and its

neighbors should satisfy (10) and (13), it is reasonable to
formulate a regularizer as follows:

𝑅 (t,w) =
𝑛

∑

𝑖=1

∑

𝑗∈N(x𝑖)
[ (t⊤ (x

𝑖
− x
𝑗
)

− w⊤x𝑗𝑇
⊤

x𝑗 (x𝑖 − x
𝑗
))

2

+𝛾
󵄩󵄩󵄩󵄩󵄩󵄩
wx𝑖 − 𝑇

⊤

x𝑖𝑇x𝑗wx𝑗
󵄩󵄩󵄩󵄩󵄩󵄩

2

2

] ,

(14)

where w = (w⊤x1 ,w
⊤

x2 , . . . ,w
⊤

x𝑛)
⊤, N(x

𝑖
) denotes the set of

nearest neighbors of x
𝑖
, and 𝛾 is a trade-off parameter to

control the influences of (10) and (13).
Relating data with a discrete weighted graph is a popular

choice, and there are indeed a large family of graph based
statistical andmachine learningmethods. It also makes sense
for us to generalize the regularizer 𝑅(t,w) in (14) using a
symmetric weight matrix 𝑊 constructed from the above

data collection 𝑋. There are several manners to construct
𝑊. One typical way is to build an adjacency graph by
connecting each data point to its 𝑘-nearest-neighbors with
an edge and then weight every edge of the graph by a certain
measure. Generally, if two data points x

𝑖
and x

𝑗
are “close,”

the corresponding weight 𝑊
𝑖𝑗
is large, whereas if they are

“far away,” then the𝑊
𝑖𝑗
is small. For example, the heat kernel

function is widely used to construct a weight matrix. The
weight𝑊

𝑖𝑗
is computed by

𝑊
𝑖𝑗
= exp(−

󵄩󵄩󵄩󵄩󵄩
x
𝑖
− x
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝜎2
) , (15)

if there is an edge connecting x
𝑖
with x

𝑗
and 𝑊

𝑖𝑗
= 0

otherwise.
Therefore, the generalization of the proposed regularizer

turns out to be

𝑅 (t,w) =
𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑊
𝑖𝑗
[ (t⊤ (x

𝑖
− x
𝑗
)

− w⊤x𝑗𝑇
⊤

x𝑗 (x𝑖 − x
𝑗
))

2

+ 𝛾
󵄩󵄩󵄩󵄩󵄩󵄩
wx𝑖 − 𝑇

⊤

x𝑖𝑇x𝑗wx𝑗
󵄩󵄩󵄩󵄩󵄩󵄩

2

2

] ,

(16)

and 𝑊 is an 𝑛 × 𝑛 symmetric weight matrix reflecting the
similarity of the data points. It is clear that when the variation
of the first-order Taylor expansion at every data point is
smooth, the value of 𝑅(t,w), which measures the linearity of
the function 𝑓 along the manifoldM, will be small.

The regularizer (16) can be reformulated as a canonical
matrix quadratic form as follows:

𝑅 (t,w) = (
t
w)
⊤

𝑆 (
t
w)

= (
t
w)
⊤

(
𝑋𝑆
1
𝑋
⊤

𝑋𝑆
2

𝑆
⊤

2
𝑋
⊤

𝑆
3

)(
t
w) ,

(17)

where 𝑋 = (x
1
, . . . , x

𝑛
) is the data matrix and 𝑆 is a pos-

itive semidefinite matrix constructed by four blocks, that
is, 𝑋𝑆

1
𝑋
⊤, 𝑋𝑆

2
, 𝑆⊤
2
𝑋
⊤, and 𝑆

3
. This formulation will be

very useful in developing our algorithm. Recall that the
dimensionality of the directional derivative wx𝑖 (𝑖 = 1, . . . , 𝑛)
is𝑚.Thereby the size of 𝑆 is (𝑑+𝑚𝑛)×(𝑑+𝑚𝑛). For simplicity,
we omit the detailed derivation of 𝑆.

It should be noted that, besides the principle that
accorded with TSIMR, the regularizer (16) can be explained
from another perspective. Recently, Lin et al. [14] proposed
a regularization method called Parallel Field Regularization
(PFR) for semisupervised regression. In spite of the different
learning scenarios, PFR shares the same spirit with TSIMR
in essence. Moreover, when the bases of the tangent space
TzM at any data point z are orthonormal, PFR can be
converted to TSIMR. It also provides a more theoretical but
complex explanation for our regularizer from the vector field
perspective.
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Input: Labeled and unlabeled examples {(x
𝑖
, 𝑦
𝑖
) | x
𝑖
∈ R𝑑, 𝑦

𝑖
∈

{1, 2, . . . , 𝐶}}
ℓ

𝑖=1
, {x
𝑖
| x
𝑖
∈ R𝑑}

𝑛

𝑖=ℓ+1
;

Trade-off parameters 𝛼, 𝛽, 𝛾 (𝛼, 𝛽, 𝛾 ≥ 0).
Output: 𝑑 × 𝐶 transformation matrix 𝑇.
Construct the adjacency graph;
Calculate the weight matrix𝑊;
for 𝑖 = 1 to 𝑛 do
Construct 𝑇x𝑖 using local PCA;

end for
Compute the eigenvectors f

1
, f
2
, . . . , f

𝐶
of (20) with respect to the non-zero

eigenvalues;
𝑇 = (t

1
, t
2
, . . . , t

𝐶
).

Algorithm 1: STSD.

3.2. An Algorithm. With the regularizer developed in
Section 3.1, we can present our STSD algorithm. Suppose
the training data include ℓ labeled examples {(x

𝑖
, 𝑦
𝑖
)}
ℓ

𝑖=1

belonging to 𝐶 classes and 𝑛 − ℓ unlabeled examples {x
𝑖
}
𝑛

𝑖=ℓ+1

where x
𝑖

∈ R𝑑 is a 𝑑-dimensional example and 𝑦
𝑖

∈

{1, 2, . . . , 𝐶} is the class label associated with the example x
𝑖
.

Define f = (t⊤,w⊤)⊤, and let 𝑆
𝑏

= (
𝑆𝑏 0
0 0 ), 𝑆𝑡 = (

𝑆𝑡 0
0 0 )

be two (𝑑 + 𝑚𝑛) × (𝑑 + 𝑚𝑛) augmented matrices extended
from the between-class scatter matrix 𝑆

𝑏
and the total scatter

matrix 𝑆
𝑡
. Note that in the semisupervised learning scenario

discussed in this section, the mean of all the samples in (2)
and (4) should be the center of both the labeled and unlabeled
examples; that is, 𝜇 = (1/𝑛)∑

𝑛

𝑖=1
x
𝑖
. The objective function of

STSD can be written as follows:

max
f

f⊤𝑆
𝑏
f

f⊤ (𝑆
𝑡
+ 𝛼𝑆) f

, (18)

where 𝛼 is a trade-off parameter. It is clear that f⊤𝑆
𝑏
f = t⊤𝑆

𝑏
t

and f⊤𝑆
𝑡
f = t⊤𝑆

𝑡
t. Therefore, STSD seeks an optimal f such

that the between-class scatter is maximized, and the total
scatter as well as the regularizer 𝑅(t,w) defined in (17) is
minimized at the same time.

The optimization of the objective function (18) can be
achieved by solving a generalized eigenvalue problem:

𝑆
𝑏
f = 𝜆 (𝑆

𝑡
+ 𝛼𝑆) f (19)

whose solution can be easily given by the eigenvector with
respect to the maximal eigenvalue. Note that since the mean
u is the center of both labeled and unlabeled examples, the
rank of 𝑆

𝑏
is𝐶. It implies that there are at most𝐶 eigenvectors

with respect to the nonzero eigenvalues. Therefore, given the
optimal eigenvectors f

1
, . . . , f

𝐶
, we can form a transformation

matrix sized 𝑑 × 𝐶 as 𝑇 = (t
1
, . . . , t

𝐶
), and then the 𝐶-

dimensional embedding b of an example x can be computed
through b = 𝑇

⊤x.
In many applications, especially when the dimensionality

of data is high while the data size is small, the matrix 𝑆
𝑡
+ 𝛼𝑆

in (19) may be singular. This singularity problem may lead

to an unstable solution and deteriorate the performance of
STSD. Fortunately, there are many approaches to deal with
the singularity problem. In this paper, we use the Tikhonov
regularization because of its simplicity and wide applicability.
Finally, the generalized eigenvalue problem (19) turns out to
be

𝑆
𝑏
f = 𝜆 (𝑆

𝑡
+ 𝛼𝑆 + 𝛽𝐼) f , (20)

where 𝐼 is the identity matrix and 𝛽 ≥ 0. Algorithm 1 gives
the pseudocode for STSD.

The main computational cost of STSD lies in building
tangent spaces for 𝑛 data points and solving the generalized
eigenvalue problem (20). The naive implementation for our
algorithm has a runtime of 𝑂((𝑑2𝑚 + 𝑚

2
𝑑) × 𝑛) for the

construction of tangent spaces and 𝑂((𝑑 + 𝑚𝑛)
3
) for the

generalized eigenvalue decomposition. This suggests that
STSD might be a time-consuming method.

However, given a neighborhood size 𝑘, there are only 𝑘+1
examples as the inputs of local PCA. Then we can obtain at
most 𝑘 + 1 meaningful orthonormal bases to construct each
tangent space, which implies that the dimensionality𝑚 of the
directional derivative wx𝑖 (𝑖 = 1, . . . , 𝑛) is always less than
𝑘+1. In practice, 𝑘 is usually small to ensure the locality.This
makes sure that 𝑚 is actually a small constant. Furthermore,
recall that the number of eigenvectorswith respect to nonzero
eigenvalues is equal to the number of classes 𝐶. Using the
technique of sparse generalized eigenvalue decomposition,
the corresponding computational cost is reduced to 𝑂(𝐶

2
×

(𝑑 + 𝑚𝑛)).
In summary, the overall runtime of STSD is 𝑂((𝑑2𝑚 +

𝑚
2
𝑑) × 𝑛 + 𝐶

2
× (𝑑 + 𝑚𝑛)). Since 𝑚 and 𝐶 are always small,

STSD actually has an acceptable computational cost.

3.3. Kernel STSD. Essentially STSD is a linear dimensionality
reduction method, which can not be used for nonlinear
dimensionality reduction or processing structured data such
as graphs, trees, or other types of structured inputs. To handle
this problem, we extend STSD to a Reproducing Kernel
Hilbert Space (RKHS).
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Suppose examples x
𝑖
∈ X (𝑖 = 1, . . . , 𝑛), where X is

an input domain. Consider a feature space F induced by a
nonlinear mapping 𝜙 : X → F. We can construct an RKHS
𝐻K by defining a kernel function K(⋅, ⋅) using the inner
product operation ⟨⋅, ⋅⟩, such that K(x, y) = ⟨𝜙(x), 𝜙(y)⟩.
Let Φ

𝑙
= (𝜙(x

1
), . . . , 𝜙(x

ℓ
)), Φ
𝑢

= (𝜙(x
ℓ+1

), . . . , 𝜙(x
𝑛
)) be

the labeled and unlabeled data matrix in the feature space
F, respectively. Then the total data matrix can be written as
Φ = (Φ

𝑙
, Φ
𝑢
).

Let 𝜙(𝜇) be the mean of all the examples inF and define
Ψ = (𝜙(𝜇

1
), . . . , 𝜙(𝜇

𝐶
)) which is constituted by the mean

vectors of each class in F. Suppose that 𝜙(𝜇) = 0 (it can
be easily achieved by centering the data in the feature space)
and the labeled examples inΦ

𝑙
are ordered according to their

labels. Then the between-class scatter matrix 𝑆𝜙
𝑏
and the total

scatter matrix 𝑆
𝜙

𝑡
in F can be written as 𝑆𝜙

𝑏
= Ψ𝑀Ψ

⊤, 𝑆𝜙
𝑡
=

Φ𝐼Φ
⊤ where 𝑀 is a 𝐶 × 𝐶 diagonal matrix whose (𝑐, 𝑐)th

element is the number of the examples belonging to class 𝑐
and 𝐼 = (

𝐼ℓ×ℓ 0
0 0 ) is a 𝑛 × 𝑛 matrix where 𝐼

ℓ×ℓ
is the identity

matrix sized ℓ × ℓ.
Recall that STSD aims to find a set of transformations

to map data into a low-dimensional space. Given examples
x
1
, . . . , x

𝑛
, one can use the orthogonal projection to decom-

pose any transformation t ∈ 𝐻K into a sum of two functions:
one lying in the 𝑠𝑝𝑎𝑛{𝜙(x

1
), . . . , 𝜙(x

𝑛
)} and the other one

lying in the orthogonal complementary space. Therefore,
there exist a set of coefficients 𝛼

𝑖
(𝑖 = 1, 2, . . . , 𝑛) satisfying

t =
𝑛

∑

𝑖=1

𝛼
𝑖
𝜙 (x
𝑖
) + k = Φ𝛼 + k, (21)

where 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)
⊤ and ⟨k, 𝜙(x

𝑖
)⟩ = 0 for all 𝑖. Note

that although we set f = (t⊤,w⊤)⊤ and optimize t and w
together, there is no need to reparametrize w like t. What we
need is to estimate tangent spaces inF through local Kernel
PCA [15].

Let 𝑇𝜙x𝑖 be the matrix formed by the orthonormal bases of
the tangent space attached to 𝜙(x

𝑖
). Substitute (21) into (17)

and replace 𝑇x𝑖 with 𝑇
𝜙

x𝑖 (𝑖 = 1, 2, . . . , 𝑛). We can reformulate
the regularizer (17) as follows:

𝑅 (𝛼,w) = 𝛼⊤Φ⊤Φ𝑆
1
Φ
⊤
Φ𝛼 + w⊤𝑆

3
w

+ 𝛼
⊤
Φ
⊤
Φ𝑆
2
w + w⊤𝑆⊤

2
Φ
⊤
Φ𝛼

= 𝛼
⊤
𝐾𝑆
1
𝐾𝛼 + w⊤𝑆

3
w

+ 𝛼
⊤
𝐾𝑆
2
w + w⊤𝑆⊤

2
𝐾𝛼,

(22)

where 𝐾 is a kernel matrix with 𝐾
𝑖𝑗
= K(x

𝑖
, x
𝑗
). With this

formulation, Kernel STSD can be converted to a generalized
eigenvalue problem as follows:

𝑆
𝜙

𝑏
𝜑 = 𝜆 (𝑆

𝜙

𝑡
+ 𝛼𝑆
𝜙
)𝜑, (23)

where we have defined 𝜑 = (𝛼
⊤
,w⊤)⊤. The definitions of 𝑆𝜙

𝑏
,

𝑆
𝜙

𝑡
, and 𝑆

𝜙 are given as follows:

𝑆
𝜙

𝑏
= (

Φ
⊤
𝑆
𝜙

𝑏
Φ 0

0 0) = (
Φ
⊤
Ψ𝑀Ψ

⊤
Φ 0

0 0) ,

𝑆
𝜙

𝑡
= (

Φ
⊤
𝑆
𝜙

𝑡
Φ 0

0 0) = (
𝐾𝐼𝐾 0
0 0) ,

𝑆
𝜙
= (

𝐾𝑆
1
𝐾 𝐾𝑆

2

𝑆
⊤

2
𝐾 𝑆

3

) .

(24)

It should be noted that every term of k vanishes from the
formulation of Kernel STSD because ⟨k, 𝜙(x

𝑖
)⟩ = 0 for all 𝑖.

SinceΨ⊤Φ can be computed through the kernelmatrix𝐾, the
solution of Kernel STSD can be obtained without knowing
the explicit form of the mapping 𝜙.

Given the eigenvectors 𝜑
1
, . . . ,𝜑

𝐶
with respect to the

nonzero eigenvalues of (23), the resulting transformation
matrix can be written as Γ = (𝛼

1
, . . . ,𝛼

𝐶
). Then, the embed-

ding b of an original example x can be computed as

b = Γ
⊤
Φ
⊤
𝜙 (x) = Γ

⊤
(K (x

1
, x) , . . . ,K (x

𝑛
, x))⊤ . (25)

4. Experiments

4.1. Toy Data. In order to illustrate the behavior of STSD,
we first perform STSD on a toy data set (two moons)
compared with PCA and LDA. The toy data set contains 100
data points and is used under different label configurations.
Specifically, 6, 10, 50, and 80 data points are randomly labeled,
respectively, and the rest are unlabeled, where PCA is trained
by all the data points without labels, LDA is trained by
labeled data only, and STSD is trained by both the labeled
and unlabeled data. In Figure 1, we show the one-dimensional
embedding spaces found by different methods (onto which
data points will be projected). As can be seen in Figure 1(a),
although LDA is able to find an optimum projection where
the within-class scatter is minimized while the between-
class separability is maximized, it can hardly find a good
projection when the labeled data are scarce. In addition, PCA
also finds a bad solution, since it has no ability to utilize the
discriminant information from class labels. On the contrary,
STSD, which can utilize both the labeled and unlabeled data,
finds a desirable projection onto which data from different
classes have the minimal overlap. As the number of labeled
data increases, we can find that the solutions of PCA and
STSD do not change, while the projections found by PCA are
gradually close to those of STSD. In Figure 1(d), the solutions
of LDA and STSD are almost identical, which means that by
utilizing both labeled and unlabeled data, STSD can obtain
the optimum solutions even when only a few data points are
labeled. This demonstrates the usefulness and advantage of
STSD in the semisupervised scenario.

4.2. Real-World Data. In this section, we evaluate STSD with
real-world data sets. Specifically, we first perform dimension-
ality reduction to map all examples into a subspace and then
carry out classification using the nearest neighbor classifier
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Figure 1: Illustrative examples of STSD, LDA, and PCA on the two-moon data set under different label configurations.The circles and squares
denote the data points in positive and negative classes, and the filled or unfilled symbols denote the labeled or unlabeled data, respectively.

(1-NN) in the subspace. This measurement for evaluating
semisupervised dimensionality reduction methods is widely
used in literature, such as [8–10, 16]. For each data set, we
randomly split out 80% of the data as the training set and
the rest as the test set. In the training set, a certain number
of data are randomly labeled while the rest of the data are
unlabeled. Moreover, every experimental result is obtained
from the average over 20 splits.

In our experiments, we compare STSD with multiple
dimensionality reduction methods including PCA, LDA,
SELF, and SDA, where LDA is performed only on the labeled
data, while PCA, SELF, SDA, and STSD are performed on
both the labeled and unlabeled data. In addition, we also
compare our method with the baseline method which just
employs the 1-NN classifier with the labeled data in the
original space. Since the performances of PCA and SELF
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Table 1: Mean values and standard deviations of the unlabeled error rates (%) with different label configurations on the face data sets.

Method Yale 3 Yale 4 ORL 2 ORL 3
Baseline 49.50 ± 4.86 43.93 ± 4.71 30.31 ± 3.11 21.13 ± 2.29
PCA 47.67 ± 4.40 42.60 ± 5.05 29.23 ± 2.56 20.30 ± 2.22
LDA 32.56 ± 3.85 25.60 ± 2.98 17.17 ± 3.23 8.05 ± 2.51
SELF 54.22 ± 3.88 52.07 ± 4.67 48.79 ± 4.39 37.48 ± 2.81
SDA 32.33 ± 4.11 25.93 ± 3.22 16.67 ± 3.36 7.85 ± 2.48
STSD 32.28 ± 4.09 25.27 ± 3.61 16.00 ± 3.03 7.73 ± 2.30

Table 2: Mean values and standard deviations of the test error rates (%) with different label configurations on the face data sets.

Method Yale 3 Yale 4 ORL 2 ORL 3
Baseline 46.17 ± 7.67 46.67 ± 8.65 29.94 ± 3.66 19.19 ± 3.50
PCA 40.67 ± 8.06 42.00 ± 7.29 28.06 ± 3.92 18.13 ± 3.71
LDA 32.33 ± 8.31 26.17 ± 7.74 16.56 ± 3.97 9.13 ± 3.63
SELF 50.00 ± 6.49 49.33 ± 8.28 47.88 ± 4.82 35.56 ± 3.52
SDA 32.00 ± 8.40 26.17 ± 7.67 16.13 ± 4.05 9.00 ± 3.33
STSD 31.83 ± 8.41 25.33 ± 8.54 15.69 ± 3.68 9.00 ± 3.16

depend on the dimensionality of the embedding subspace
discovered by eachmethod, we show the best results for them.

For the graph based methods, including SELF, SDA, and
STSD, the number of nearest neighbors for constructing
adjacency graphs is determined by fourfold cross-validation.
The parameters 𝛼 and 𝛾 for STSD are selected through
fourfold cross-validation, while the Tikhonov regularization
parameter 𝛽 is fixed to 10

−1. In addition, the parameters
involved in SELF and SDA are also selected through fourfold
cross-validation. We use the heat kernel function (15) to
construct the weight matrix, and the kernel parameter 𝜎2 is
fixed as𝑑av unless otherwise specifiedwhere𝑑av is the average
of the squared distances between all data points and their
nearest neighbors.

Two types of data sets under different label configurations
are used to conduct our experiments. One type of data sets is
the face images which consist of high-dimensional images,
and the other one is the UCI data sets constituted by low-
dimensional data. For the convenience of description, we
name each configuration of experiments as “Data Set” +
“Labeled Data Size.” For example, for the experiments with
the face images, “Yale 3” means the experiment is performed
on the Yale data set with 3 labeled data per class. Analogously,
for the experiments with the UCI data sets, “BCWD 20”
means the experiment is performed on the Breast Cancer
Wisconsin (Diagnostic) data set with a total of 20 labeled
examples from all classes.

4.2.1. Face Images. It is well known that high-dimensional
data such as images and texts are supposed to live on or
near a low-dimensional manifold. In this section, we test
our algorithm with the Yale and ORL face data sets which
are deemed to satisfy this manifold assumption. The Yale
data set contains 165 images of 15 individuals and there
are 11 images per subject. The images have different facial

expressions, illuminations, and facial details (with or without
glass). The ORL data set contains 400 images of 40 distinct
subjects under varying expressions and illuminations. In our
experiments, every face image is cropped to consist of 32×32
pixels with 256 grey levels per pixel. Furthermore, for the Yale
data set, we set the parameter 𝜎2 of the heat kernel to 0.1𝑑av.
We report the error rates on both the unlabeled training data
and test data. Tables 1 and 2 show that STSD is always better
than or at least comparable with other counterparts in all
the cases, which demonstrates that STSD can well exploit the
manifold structure for dimensionality reduction. Notice that
SELF gets inferior results. We conjecture that this is because
it has no ability to capture the underlyingmanifold structures
of the data.

4.2.2. UCI Data Sets. In this set of experiments, we use
three UCI data sets [17] including Breast Cancer Wiscon-
sin (Diagnostic), Climate Model Simulation Crashes, and
Cardiotocography which may not well satisfy the manifold
assumption. For simplicity, we abbreviate these data sets as
BCWD, CMSC, and CTG, respectively. BCWD consists of
569 data points from two classes in R30. CMSC consists of
540 data points from two classes inR18. CTG consists of 2126
data points from ten classes in R23.

From the results reported in Tables 3 and 4, it can be
seen that when the labeled data are scarce, the performance
of LDA is even worse than the baseline method due to
the inaccurate estimation of the scatter matrices. However,
STSD achieves the best or comparable results among all
other methods in all configurations, expect for the test error
rate in BCWD 10. Although STSD adopts a relatively strong
manifold assumption, it still has sufficient flexibility to handle
general data which may not live on a low-dimensional
manifold.
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Table 3: Mean values and standard deviations of the unlabeled error rates (%) with different label configurations on the UCI data sets.

Method BCWD 10 BCWD 30 CMSC 10 CMSC 30 CTG 20 CTG 160
Baseline 11.90 ± 4.04 10.22 ± 3.21 14.39 ± 6.40 14.05 ± 1.90 63.71 ± 3.73 47.91 ± 1.73
PCA 11.87 ± 4.01 10.21 ± 3.27 11.86 ± 2.51 13.43 ± 2.40 63.74 ± 3.75 47.89 ± 1.66
LDA 20.34 ± 8.76 9.61 ± 2.76 13.18 ± 4.49 14.21 ± 3.28 67.28 ± 6.32 41.60 ± 2.65
SELF 13.43 ± 3.63 14.1 ± 4.20 10.06 ± 3.30 11.88 ± 2.53 67.00 ± 4.50 44.09 ± 2.66
SDA 10.10 ± 3.26 7.12 ± 2.17 9.06 ± 0.97 8.71 ± 0.78 58.27 ± 5.01 41.91 ± 2.17
STSD 10.07 ± 3.46 6.99 ± 1.73 8.98 ± 1.04 8.60 ± 0.58 58.11 ± 4.78 40.88 ± 2.15

Table 4: Mean values and standard deviations of the test error rates (%) with different label configurations on the UCI data sets.

Method BCWD 10 BCWD 30 CMSC 10 CMSC 30 CTG 20 CTG 160
Baseline 12.75 ± 6.56 10.65 ± 4.20 14.63 ± 8.48 12.81 ± 4.37 64.15 ± 4.74 48.76 ± 2.44
PCA 12.75 ± 6.56 10.50 ± 4.16 8.75 ± 1.90 9.13 ± 2.66 64.07 ± 4.76 48.66 ± 2.41
LDA 20.60 ± 10.34 10.85 ± 5.06 13.19 ± 5.66 15.13 ± 5.35 67.47 ± 7.27 41.95 ± 3.43
SELF 14.65 ± 6.88 13.70 ± 4.37 9.06 ± 2.66 8.69 ± 1.84 67.02 ± 5.06 43.34 ± 2.81
SDA 9.75 ± 3.60 8.75 ± 3.09 8.69 ± 3.15 8.06 ± 1.70 58.72 ± 4.26 41.67 ± 3.11
STSD 10.15 ± 4.55 8.50 ± 3.19 8.63 ± 2.59 8.06 ± 1.54 58.62 ± 4.11 41.55 ± 3.31

Notice that the error rates of several dimensionality
reduction methods over the CMSC data set do not improve
with the increasing size of labeled data. The reason may be
that the data in the CMSC data set contain some irrelevant
features as reflected by the original data description [18],
which leads to the unexpected results. Nevertheless, SDA and
STSDachievemore reasonable results due to their capabilities
to extract information from both labeled and unlabeled data.

It should be noted that overall the experiments are
conducted with 5 data sets, and in terms of the results of all
the data sets STSD is likely to beat other methods account for
a sign-test’s 𝑃 value of 0.031, which is statistically significant.
This also demonstrates that STSD is better than the related
methods.

4.3. Connection with the Laplacian Regularization. Essen-
tially, both STSD and SDA are regularized LDA methods
with specific regularizers. STSD imposes the regularizer (16)
which prefers a linear function along themanifold, while SDA
employs the Laplacian regularizer to penalize the function
differences among “similar” examples. Now consider a regu-
larized LDA method using both of these regularizers named
STSLap, whose objective function can be written as follows:

max
t,w

t⊤𝑆
𝑏
t

t⊤𝑆
𝑡
t + 𝛼𝑅Lap (t) + 𝛽𝑅STS (t,w)

, (26)

where𝑅Lap(t) = t⊤𝐿t is the Laplacian regularizer used in SDA
with 𝐿 being the Laplacian matrix [19] and 𝑅STS(t,w) is the
regularizer used in STSD,which is defined as (16).Theparam-
eters 𝛼 and 𝛽 are used to control the trade-off between the
influences of 𝑅Lap(t) and 𝑅STS(t,w). Similar to STSD, STSLap
can also be converted to a generalized eigenvalue problem,
which can be easily solved through eigenvalue decomposi-
tion.

Although the previous experiments have shown that
STSD gets better results than SDA in most situations, SDA
can achieve similar results with STSD in some configurations.
However, this does not mean that STSD and SDA are similar
or, in other words, 𝑅STS(t,w) and 𝑅Lap(t) have similar behav-
ior. In fact, the two regularizers seem to complement each
other. To demonstrate this complementarity, we compare
STSLap with SDA and STSD under a medium-sized label
configuration over all the data sets used in the previous
experiments. Specifically, the experiments are performed
on BCWD 30, CMSC 30, CTG 160, Yale 3, and ORL 2.
For each data set, the neighborhood size used to construct
the adjacency graph is set to be the one supported by the
experimental results with both SDA and STSD in Sections
4.2.1 and 4.2.2. This means that all the methods compared
in this section utilize the same graph to regularize the LDA
model for each data set. The parameters 𝛼, 𝛽 in (26) and 𝛾 in
𝑅STS(t,w) are selected through fourfold cross-validation.

Note that given a graph, the performance of STSLap can
be at least, ideally, identical to SDA or STSD, because STSLap
degenerates to SDA or STSDwhen the parameter 𝛼 or 𝛽 is set
to zero. However, if STSLap achieves better results than both
SDA and STSD, we can deem that 𝑅Lap(t) and 𝑅STS(t,w) are
complementary.

Tables 5 and 6 show that the performance of STSLap
is better than both SDA and STSD in most of the cases.
Moreover, although it is not shown in the tables, the trade-
off parameters 𝛼 and 𝛽 are scarcely set to be zero by
cross-validation. This means that STSLap always utilizes the
information discovered from both 𝑅Lap(t) and 𝑅STS(t,w). In
conclusion, the proposed regularizer 𝑅STS(t,w) can capture
themanifold structure of data which can not be discovered by
Laplacian regularizer.This implies that these two regularizers
are complementary to each other, and we could use them
together to yield probably better results in practice. It should
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Table 5: Mean values and standard deviations of the unlabeled error rates (%) with medium-sized labeled data on different data sets.

Method BCWD 30 CMSC 30 CTG 160 Yale 3 ORL 2
SDA 6.88 ± 2.53 9.60 ± 2.27 41.97 ± 2.72 32.39 ± 5.98 20.81 ± 2.76
STSD 6.96 ± 2.45 9.40 ± 2.30 43.47 ± 2.83 32.56 ± 6.67 16.48 ± 2.14
STSLap 7.07 ± 2.46 9.60 ± 2.24 41.57 ± 2.66 33.39 ± 7.01 16.42 ± 2.07

Table 6: Mean values and standard deviations of the test error rates (%) with medium-sized labeled data on different data sets.

Method BCWD 30 CMSC 30 CTG 160 Yale 3 ORL 2
SDA 6.90 ± 2.86 9.56 ± 3.28 41.85 ± 3.23 33.33 ± 5.92 20.63 ± 5.98
STSD 6.70 ± 2.81 9.44 ± 3.45 42.47 ± 3.57 33.00 ± 6.20 14.81 ± 4.20
STSLap 6.45 ± 2.74 9.38 ± 3.13 41.18 ± 3.54 32.83 ± 6.24 14.44 ± 4.28

be noted that our aim is not to compare STSD with SDA in
this set of experiments, and we can not make any conclusion
about whether or not STSD is better than SDA from Tables
5 and 6 because the neighbourhood size for each data set is
fixed.

5. Discussion

5.1. Related Work. STSD is a semisupervised dimensionality
reduction method under a certain manifold assumption.
More specifically, we assume that the distribution of data can
be well approximated by a linear function on the underly-
ing manifold. One related method named SDA [8] adopts
another manifold assumption. It simply assumes that the
mapping function should be as smooth as possible on a given
graph.This strategy is well known as the Laplacian regulariza-
tionwhich is widely employed in the semisupervised learning
scenario. However, STSD follows a different principle to
regularize the mapping function, which not only provides
an alternative strategy for semisupervised dimensionality
reduction, but also attains the complementarity with the
classic Laplacian regularization. SELF [10] is another related
approach, which is a hybrid method of local LDA [11] and
PCA. Despite its simplicity, SELF can only discover the linear
structure of data, whereas our method is able to capture the
nonlinear intrinsic manifold structure.

Rather than constructing an appropriate regularizer on
a given graph, SSDA [9] and semisupervised dimensionality
reduction (SSDR) [16] focus on building a good graph and
then perform the Laplacian-style regularization on this
graph. SSDA regularizes LDA on a graph constructed by a
path-based similarity measure. The advantage of SSDA is its
robustness against outliers, because SSDA aims to preserve
the global manifold information. SSDR constructs a graph
according to the so-called must-link and cannot-link pair-
wise constraints, which gives a natural way to incorporate
prior knowledge into the semisupervised dimensionality
reduction. However, this prior knowledge is not always
available in practice. In contrast to SSDA and SSDR, our
method is flexible enough to perform regularization on any
graph and free from the necessity of extra prior knowledge. In
fact, the advantage of SSDA or SSDR can be easily inherited

through performing STSD with the graph constructed by
corresponding method (SSDA or SSDR), which is another
important merit of STSD.

5.2. Further Improvements. For the manifold related learning
problem considered in STSD, the estimation of bases for
tangent spaces is an important step. In this paper, we use local
PCA with fixed neighborhood size to calculate the tangent
spaces, and the neighborhood size is set to be same as the
one used to construct the adjacency graph. This is certainly
not the optimal choice, since manifolds can have varying
curvatures and data could be nonuniformly sampled. Note
that the neighborhood size can determine the evolution of
calculated tangent spaces along the manifold. When a small
neighborhood size 𝑘 is used, there are at most 𝑘 + 1 examples
for the inputs of local PCA. However, when we need to
estimate a set of tangent spaces which have relative high
dimensionality 𝑚 (𝑚 > 𝑘 + 1), it is almost impossible to get
accurate estimates of the tangent spaces, because there are at
most 𝑘+1meaningful orthonormal bases obtained from local
PCA. Moreover, noises can damage the manifold assumption
as well to a certain extent. All these factors explain the
necessity for using different neighborhood sizes and more
robust subspace estimation methods.

In our method, each example in the data matrix can
be treated as an anchor point, where local PCA is used to
calculate the tangent space. The number of parameters that
should be estimated in our method basically grows linearly
with respect to the number of anchor points. Therefore, in
order to reduce the parameters to be estimated, one possible
approach is to reduce the anchor points where only “key”
examples are kept as the anchor points. This will be a kind of
research for data set sparsification. People can make different
criteria to decide whether or not an example should be
regarded as the “key” one.

The research of anchor point reduction is especially
useful when training data are large-scale. For large-scale data,
anchor point reduction can be promising to speed up the
training process. In addition, data can exhibit different man-
ifold dimensions at different regions, especially for complex
data.Therefore, adaptively determining the dimensionality at
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different anchor points is also an important refinement of the
current approach.

6. Conclusion

In this paper, we have proposed a novel semisupervised
dimensionality reduction method named Semisupervised
Tangent Space Discriminant Analysis (STSD), which can
extract the discriminant information as well as the manifold
structure from both labeled and unlabeled data, where a
linear function assumption on the manifold is exploited.
Local PCA is involved as an important step to estimate
tangent spaces and certain relationships between adjacent
tangent spaces are derived to reflect the adopted model
assumption.The optimization of STSD is readily achieved by
the eigenvalue decomposition.

Experimental results on multiple real-world data sets
including the comparisons with related works have shown
the effectiveness of the proposed method. Furthermore, the
complementarity between our method and the Laplacian
regularization has also been verified. Future work directions
include finding more accurate methods for tangent space
estimation and extending our method to different learning
scenarios such as multiview learning and transfer learning.
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