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Abstract We propose a novel supervised dimensionality reduction method named local
tangent space discriminant analysis (TSD) which is capable of utilizing the geometrical
information from tangent spaces. The proposed method aims to seek an embedding space
where the local manifold structure of the data belonging to the same class is preserved as
much as possible, and the marginal data points with different class labels are better separated.
Moreover, TSD has an analytic form of the solution and can be naturally extended to non-
linear dimensionality reduction through the kernel trick. Experimental results on multiple
real-world data sets demonstrate the effectiveness of the proposed method.

Keywords Dimensionality reduction · Supervised learning · Manifold learning ·
Tangent space

1 Introduction

Dimensionality reduction is a learning task that aims to find a low-dimensional represen-
tation of high-dimensional data, while preserving data information as much as possible.
Processing data in the low-dimensional space can reduce computational cost and suppress
noises. Provided that dimensionality reduction is performed appropriately, the discovered
low-dimensional representations of data will benefit subsequent tasks, e.g., classification,
clustering, data visualization.

PCA, as an unsupervised dimensionality reduction method, seeks a set of orthogonal pro-
jection directions alongwhich the sum of variances of data is maximized. Some other popular
unsupervised methods are geometrically motivated, which aim to discover the geometrical
structure of the underlying manifold, such as Laplacian eigenmaps [2], Hessian eigenmaps
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[5], locally linear embedding [9], locality preserving projections [7], and local tangent space
alignment [17], etc. Although unsupervised approaches can reveal the underlying data man-
ifold, they may not be the best choices for some learning scenarios because they are not able
to utilize the discriminative information from data labels.

LDA is a supervised dimensionality reduction method. It finds a subspace in which
data points from different classes are projected far away from each other, while those
belonging to the same class are projected as close as possible. However, LDA tends to
get undesirable results when data are multimodal [6] or are mainly characterized by their
variances. The reason why this happens lies in the assumption adopted by LDA that data
points belonging to each class are generated from the multivariate Gaussian distributions
with the same covariance matrix but different means. This assumption is invalid in dealing
with the data formed by several separate clusters or those living on an underlying mani-
fold.

To solve this problem, subclass discriminant analysis [18] approximates the potential
distribution of data with a mixture of Gaussian distributions. More specifically, it first divides
each class into a set of subclasses through clustering and then performs LDA on the divided
data. Another way to overcome the drawback of LDA is preserving the data structure locally.
Marginal fisher analysis (MFA) [15] aims to gather the nearby examples of the same class, and
separate themarginal examples belonging to different classes. Locality sensitive discriminant
analysis (LSDA) [3] maps data points into a subspace where the examples with the same label
at each local area are close, while the nearby examples from different classes are apart from
each other. Local fisher discriminant analysis (LFDA) [12] also focuses on discovering the
local data structure. It is equivalent to operate LDA in the local scope around each example. In
fact, these local structure oriented methods actually fall into the same graph Laplacian based
framework. All of them employ the Laplacian matrix to preserve the local geometry of the
datamanifold. However, this framework fails to discover the local manifold information from
tangent spaceswhich could be very useful and can enhance the performance of dimensionality
reduction in some situations [11,13].

In this paper, we present a novel supervised dimensionality reduction method named local
tangent space discriminant analysis (TSD). Unlike previous approaches using the graph
Laplacian to discover the data manifold, our method uses the first-order Taylor expansion
to represent the geometry of the local area around each data point. This strategy provides
us with a natural way to utilize the information from tangent spaces. Then we seek a linear
transformation to preserve the local manifold structure of the data belonging to the same class
as much as possible, while maximizing the marginal data points with different class labels.
As a result, the geometrical information from tangent spaces can be readily incorporated into
the proposed method to improve the performance of dimensionality reduction. Moreover,
the objective function of our method can be optimized analytically by solving a generalized
eigenvalue problem. This also leads to a natural extension for non-linear dimensionality
reduction through the kernel trick.

The rest of this paper is organized as follows. We briefly review some related work
including MFA, LSDA and LFDA, and show how these methods can be considered in the
same framework in Sect. 2. Then the local Tangent Space Discriminant analysis (TSD)
along with its kernelization are introduced in Sect. 3. Section 4 discusses the connection
and difference between the proposed method and related work. In Sect. 5, experimental
results are presented. Finally, we give concluding remarks and discuss some future work in
Sect. 6.
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2 Related Work

Many dimensionality reduction methods have been proposed in recent years. Although they
have different names and are derived from various motivations, a large portion of them fall
into an unified graph Laplacian based framework. For example, Yan et al. [15] proposed a
dimensionality reduction framework called graph embeddingwhich can group togethermany
popular dimensionality reduction approaches into a general formulation. In this section, we
first introduce the graph embedding framework, and then briefly review some related work
and show how they fall into the same framework. Finally, we provide a brief summary to
discuss the strength and weakness of this framework.

2.1 Graph Embedding

Given a data set X consisting of n examples and labels, {(xi , yi )}ni=1, where xi ∈ R
d denotes

a d-dimensional example, yi ∈ {1, 2, . . . ,C} denotes the class label corresponding to xi ,
and C is the total number of classes. The relationship between each example can be easily
characterized by a undirected weighted graph G = {X,W }, where each example is served as
the vertex of G and a symmetric weight matrix W ∈ R

n×n records the weight on the edge of
each pair of vertices.W measures the similarity between each example, and its characteristic
varies as the criterion of similarity changes. Generally, if two examples xi and x j are “close”,
the corresponding weight Wi j is large, whereas if they are “far away”, then the Wi j is small.
Provided a certainW , the intrinsic geometry of graph G can be represented by the Laplacian
matrix [4], which is defined as

L = D − W, (1)

where D is a diagonal matrix with the i-th diagonal element being Dii = ∑
j �=i Wi j . The

Laplacian matrix is capable of representing certain geometry of data according to a specific
weight matrix, and thus can be used for dimensionality reduction.

To find a good low-dimensional embedding b = (bx1 , bx2 , . . . , bxn )
� from high-

dimensional data, we have to preserve the intrinsic geometry of the original data as much as
possible. Therefore, it is natural to seek the embedding preserving the most information from
G in each dimension. This graph-preserving criterion can be formulated as follows [15]:

b∗ = arg min
b�Lbb=a

∑

i �= j

Wi j‖bi − b j‖2

= arg min
b�L pb=a

b�Lb, (2)

where L is the Laplacian matrix of G defined in (1), L p is the penalty constraint matrix, and
a is a constant defined to avoid a trivial solution of the objective function. Note that L p can
have multiple forms, which is usually a diagonal matrix or the Laplacian matrix of a penalty
graph Gp = {X,W p} constructed by the same vertices X yet a different weight matrix W p .

In this paper, we mainly focus on the linear dimensionality reduction, and the embedding
of each example xi is computed as bxi = t�xi where t is a projection vector. In this case,
(2) becomes:

t∗ = arg min
t�XL p X� t=a

= t�XLX� t. (3)

The objective function (3) can be converted to a generalized eigenvalue problem:

XLX� t = λXL pX� t. (4)
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whose solution can be easily given by the eigenvector with respect to the smallest eigenvalue.
Given the above results, many local structure oriented dimensionality reduction approach-

es, which closely related to our proposed method, can be grouped into the unified framework.
Next, we mainly discuss three of them including MFA, LSDA and LFDA.

2.2 Marginal Fisher Analysis

Marginal fisher analysis (MFA) is a dimensionality reduction approach that is directly derived
from the graph embedding framework [15]. The main idea of MFA is to preserve the intra-
class compactness represented by an intrinsic graph under the constraint that the interclass
separability characterized by a penalty graph should be kept. For this purpose, each example
is connected to its k1-nearest neighbors belonging to the same class in the intrinsic graph,
and the penalty graph is built by connecting k2-nearest pairs of the marginal point in different
classes.

For each example, let Nk1(i) be the set of the k1-nearest neighbors of xi in the same
class, and Pk2(i) indicates the set of the k2-nearest pairs among the set {(i, j), yi �= y j }. The
intraclass compactness is formulated by a local within-class scatter matrix S̄w:

S̄w =
∑

i

∑

i∈Nk1 ( j) or j∈Nk1 (i)

(xi − x j )(xi − x j )
�

= 2X (D̄ − W̄ )X�

= 2X L̄X�,

where L̄ = D̄ − W̄ is the Laplacian matrix, D̄ is a diagonal matrix with the i-th diagonal
element being D̄ii = ∑

j �=i W̄i j , and the weight matrix W̄ is defined as follows:

W̄i j =
{
1 if i ∈ Nk1( j) or j ∈ Nk1(i)
0 else.

Similarly, the interclass separability can be characterized by a local between-class scatter
matrix S̄b:

S̄b =
∑

i

∑

(i, j)∈Pk2 (i) or (i, j)∈Pk2 ( j)

(xi − x j )(xi − x j )
�

= 2X (D̄ p − W̄ p)X�

= 2X L̄ pX�,

where L̄ p = D̄ p−W̄ p is the Laplacianmatrix, D̄ p is a diagonal matrix with the i-th diagonal
element being D̄ p

ii = ∑
j �=i W̄

p
i j and the weight matrix W̄ p is defined as follows:

W̄ p
i j =

{
1 if (i, j) ∈ Pk2(i) or (i, j) ∈ Pk2( j)
0 else.

Following the graph-preserving criterion presented in (2), the objective function of MFA
can be written as follows:

tMFA = arg min
t� S̄b t=a

t� S̄w t

= arg min
t�X L̄ p X� t=a

= t�X L̄X� t. (5)

123



Local Tangent Space Discriminant Analysis

2.3 Locality Sensitive Discriminant Analysis

Another relatedmethod is locality sensitive discriminant analysis (LSDA) [3] which assumes
that data live on or close to a manifold. It aims to preserve the local geometrical structure of
the manifold while maximizing the local margin between different classes.

LSDA seeks a linear projection t optimizing

min
∑

i j

W̄w
i j

(
t�xi − t�x j

)2
,

max
∑

i j

W̄ b
i j

(
t�xi − t�x j

)2

under the constraint that t�X D̄wX� t = 1. Let Nw(i) be the set of the k-nearest neighbors
of xi sharing the same label yi , and Nb(i) be the set of the k-nearest neighbors of xi having
the labels different from yi . Then the weight matrices W̄w and W̄ b are defined as:

W̄w
i j =

{
1 if i ∈ Nw( j) or j ∈ Nw(i)
0 else,

W̄ b
i j =

{
1 if i ∈ Nb( j) or j ∈ Nb(i)
0 else.

The objective function of LSDA described above can be formulated as follows:

tLSDA = arg max
t�X D̄wX� t=1

t�X
(
α L̄b + (1 − α)W̄w

)
X� t

= arg min
t�X D̄wX� t=1

t�X
(
(α − 1)W̄w − α L̄b

)
X� t, (6)

where α is a trade-off parameter, L̄b is the Laplacian matrix constructed by W̄ b, and D̄w is
a diagonal matrix with the i-th diagonal element being D̄w

i i = ∑
j �=i W̄

w
i j . LSDA follows the

framework defined in (3) and the solution tLSDA s given by (4) with L = (α − 1)W̄w −α L̄b

and L p = D̄w .

2.4 Local Fisher Discriminant Analysis

Local Fisher discriminant analysis (LFDA) [12] combines the ideas of LDA and LPP [7] to
overcome the problem that LDA [6] can not appropriately handle the data withmultimodality.
More specifically, it evaluates the levels of the between-class scatter and the within-class
scatter in a local manner, and tries to attain the local between-class separation and the local
within-class structure preservation at the same time [12].

Let S̃w and S̃b be the local within-class scatter matrix and the local between-class scatter
matrix defined by

S̃w = 1

2

∑

i j

W̃w
i j (xi − x j )(xi − x j )

� = X L̃wX�,

S̃b = 1

2

∑

i j

W̃ b
i j (xi − x j )(xi − x j )

� = X L̃bX�,
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where L̃w and L̃b are the Laplacian matrices constructed by the weight matrices W̃w
i j and

W̃ b
i j with

W̃w
i j =

{
Ai j/nc if yi = y j
0 if yi �= y j ,

W̃ b
i j =

{
Ai j (1/n − 1/nc) if yi = y j
1/n if yi �= y j .

nc denotes the number of examples from the c-th class, and Ai j is a weight that indicates the
similarity between xi and x j , whose definition is given as follows:

Ai j =
{
exp

(
−‖xi−x j‖2

σiσ j

)
if i ∈ Nk( j) or j ∈ Nk(i)

0 else,

where σi is set to be the distance between xi and its k-th nearest neighbor.
LFDA seeks a linear projection so that S̃w is minimized and S̃b is maximized. Essentially,

this strategy is equivalent to find a projection which fits the Fisher criterion in the local area
around each example. The optimization problem of LFDA is given as follows:

tLFDA = argmax
t

t� S̃b t

t� S̃w t
= argmax

t

t�X L̃wX� t

t�X L̃bX� t

= arg min
t�X L̃b X� t=1

= t�X L̃X� t. (7)

According to (7), it is easy to find that LFDA also falls into the Graph Embedding frame-
work defined in (3) with L = L̃w , L p = L̃b and a = 1.

2.5 A Brief Summary

With the above results, it is easy to find that all methods mentioned above can be considered
in the same graph Laplacian based framework and the main difference among them only
lies in the different graphs adopted by each method. For different methods, such graphs are
constructed by certain weight matrices to incorporate specific neighborhood information of
the data set. One important merit of this framework is that it not only takes advantage of the
facility of the Laplacian matrix to preserve the local geometry of the data manifold, but also
benefits from the elegant formulation which can be easily optimized through the generalized
eigenvalue decomposition.

Although the graph Laplacian provides us with a powerful and flexible tool to discover
the underlying data manifold, it fails to discover the local geometrical structure from tangent
spaces, and thus may lose much useful information whose effectiveness has been shown in
many applications especially in the handwritten digit recognition [11]. Moreover, the graph
Laplacian may fail to capture meaningful manifold structures, when data are sparsely distrib-
uted in the original space. In this case, the graph Laplacian constructed by sparsely distributed
data in the high-dimensional space may not be able to discover the correct underlying man-
ifold, since it can hardly connect sparse data points into a smooth manifold. On the other
hand, the tangent spaces of the underlying manifold, which are low-dimensional in nature,
can reflect the manifold structure in each local area. This implies that tangent spaces are
very useful for learning the data manifold. Then how to develop a dimensionality reduction
algorithmwhich is capable of combining the flexibility of the graph Laplacian with the utility
of tangent spaces? To solve this problem, we present our algorithm which can readily use
the structural information from tangent spaces for supervised dimensionality reduction.
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Fig. 1 The tangent space TxM and a tangent vector v ∈ TxM, along a curve travelling through x ∈ M

3 Local Tangent Space Discriminant Analysis

In this section, we present the local tangent space discriminant analysis (TSD) algorithm
and its non-linear extension. As a supervised dimensionality reduction method, TSD aims
to seek an embedding space where the local manifold structure of the data belonging to the
same class is preserved as much as possible, and the marginal data points with different
class labels are better separated. Compared with the methods discussed in Sect. 2, the key
advantage of our algorithm is that it is capable of capturing the local manifold structure from
tangent spaces without losing the analytic form of the solution.

3.1 Preliminaries

To begin with, we briefly introduce the concepts of the tangent space and tangent vector.
In differential geometry, one can attach to every point x of a differentiable manifold M a
tangent space TxM in which every vector tangentially passes through x. The elements of the
tangent space are called tangent vectors at x, which is a vector that is tangent to a curve or
surface at x (see Fig. 1 for the illustration). All the tangent spaces of a connected manifold
have the same dimension, equal to the dimension of the manifold. In practice, if the manifold
is smooth enough, the subspace constructed by performing PCA on the neighborhood of x
can be a good approximation of the tangent space at x [14], since the nearby data points of
x can be viewed as approximately lying in a subspace which is tangent to the data manifold.
Once tangent spaces and tangent vectors have been introduced, they can serve to characterize
a differentiable curve on the manifold whose derivative at any point is equal to the tangent
vector attached to that point. This is a crucial property that plays a key role in deriving our
TSD algorithm.

In recent years, some tangent space based dimensionality reduction methods have been
proposed by using the above property. They learn the data manifold by estimating a func-
tion whose value can serve as a low-dimensional representation of the manifold. Tangent
space intrinsic manifold regularization (TSIMR) [13] estimates a local linear function on the
manifold which has constant manifold derivatives. Parallel vector field embedding (PFE) [8]
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represents a function along the manifold from the perspective of vector fields and requires
the vector field at each data point to be as parallel as possible. Although they are effective
to preserve the manifold geometry, these tangent space based methods are unsupervised in
nature, which have no ability to utilize the discriminant information of class labels. There-
fore, they are not optimal for the supervised case. To solve this problem, we propose the
TSD algorithm which partly shares the same spirit with TSIMR and PFE but is optimal for
supervised dimensionality reduction.

3.2 The Algorithm

Suppose that data are sampled fromanm-dimensional smoothmanifoldM in ad-dimensional
space. Let TzM denotes the tangent space attached to z, where z ∈ M is a fixed data point
on theM. Motivated by Tangent Space Intrinsic Manifold Regularization (TSIMR) [13], we
represent the local manifold structure of data by means of tangent spaces. According to the
first-order Taylor expansion at z, any function f defined on the manifoldM can be expressed
as:

f (x) = f (z) + wz
�uz(x) + O(‖x − z‖2),

where x ∈ R
d is a d-dimensional data point and uz(x) = T�

z (x − z) is an m-dimensional
tangent vector which gives the m-dimensional representation of x in TzM. Tz is a d × m
matrix formed by the orthonormal bases of TzM, which can be estimated through local PCA,
i.e., performing standard PCA on the neighborhood of z. And wz is anm-dimensional vector
representing the directional derivative of f at z with respect to uz(x) on the manifold M.

In the scenario of dimensionality reduction, f (x) denotes a one-dimensional embedding
of x. If there are two data points z and z′ have a small Euclidean distance, by using the
first-order Taylor expansion at z′, the embedding f (z) can be represented as:

f (z) = f (z′) + w�
z′T

�
z′ (z − z′) + O(‖z − z′‖2). (8)

Suppose that the data can be well characterized by a linear function on the underlying
manifold M. Then we can omit the remainders in (8) because the second-order derivatives
of f vanishes. Therefore, provided z and z′ are close enough, any embedding f (z) can be
well approximated by a linear function as follows:

f (z) ≈ f (z′) + w�
z′T

�
z′ (z − z′). (9)

Based on the above results, we know that every data point in a local area should satisfies
(9), which leads to a natural criterion of preserving the local manifold structure of data.
Suppose that the training data include n examples {(xi , yi )}ni=1 belonging toC classes where
xi ∈ R

d is a d-dimensional example, and yi ∈ {1, 2, . . . ,C} is the class label associated
with the example xi . Consider a linear projection t ∈ R

d which maps the data to a one-
dimensional embedding. Then the embedding of x can be expressed as f (x) = t�x. We
aim to find a projection t to minimize the difference between the l.h.s and the r.h.s of (9)
for every example and its neighbors belonging to the same class, and to better separate the
marginal data points in different classes.

In order tominimize the difference between the l.h.s and the r.h.s of (9) for nearby intraclass
data, we need to construct the within-class graph Gw. For the within-class graph Gw , if xi
is among the k1-nearest neighbors of x j with yi = y j , an edge is added between xi and x j ,
and the elements of the weight matrixWw are set toWw

i j = Ww
j i = 1. Then we can formulate

a within-class objective function as follows:
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min
∑

i j

Ww
i j

(
t�xi − t�x j − w�

x j
T�
x j

(xi − x j )
)2

, (10)

Ww
i j =

{
1 if i ∈ Nk1( j) or j ∈ Nk1(i)
0 else,

(11)

where Nk1(i) denotes the set of the k-nearest neighbors of xi sharing the same label yi ,
and the orthonormal base matrix Txi of the tangent space TxiM at each data point xi are
computed by performing PCA on the k1-nearest neighborhood of xi .

To separate the marginal data points in different classes, we need to maximize and the
distances of the embeddings of nearby interclass data points. To this end, we need to construct
the between-class graph Gb. For the between-class graph Gb, if the pair (i, j) is among the
k2-shortest pairs in the set {(i, j), yi �= y j }, an edge is added between xi and x j , and the
elements of the weight matrixWb are set toWb

i j = 1. Similar to the above objective function,
we can write a between-class objective function as follows:

max
∑

i j

Wb
i j

(
t�xi − t�x j

)2
, (12)

Wb
i j =

{
1 if (i, j) ∈ Pk2(i) or (i, j) ∈ Pk2( j)
0 else,

(13)

where Pk2(i) indicates the set of the k2-nearest pairs among the set {(i, j), yi �= y j }.
Note that the terms w�

x j
T�
x j

(xi − x j ) (i, j = 1, . . . , n) in (10) distinguish our strategy
of preserving the local data structure from the graph Laplacian based one, where wx j is a
coefficient vector and should be optimized with t simultaneously. These terms characterize
howwell two different examples xi and x j fit into the local linear approximation of f , which
leads to an appropriate way to preserve the local intraclass geometry along the manifoldM.
Therefore, our strategy can extract more geometrical information from the data than the graph
Laplacian based one. Moreover, any valid weight matrixWw , such as the one used in LFDA,
can be used to preserve specific geometrical structure of the data manifold. This free-form
property of the weight matrix is of great importance when we want to apply dimensionality
reduction to various types of data.

The objective function (10) can be reformulated as a canonical matrix quadratic form as
follows:

∑

i j

Ww
i j

(
t�xi − t�x j − w�

x j
T�
x j

(xi − x j )
)2

=
(

t
w

)� (
XS1X� XS2
S2�X� S3

)(
t
w

)

=
(

t
w

)�
S

(
t
w

)

, (14)

where we have defined w = (
w�

x1 ,w
�
x2 , . . . ,w

�
xn

)�
, X = (x1, . . . , xn) is the data matrix,

and S is a (d + mn) × (d + mn) positive semi-definite matrix constructed by four blocks,
i.e., XS1X�, XS2, S�

2 X� and S3. For simplicity, we omit the detailed derivation of S here,
which is available in the Appendix 1.

Recall thatwxi is the directional derivative of f at xi . Note that the linear projection vector
t is under the influences of both the direction and the length of eachwxi . Tomakewithin-class
examples further compacted, we hope that the projection t is more effected bywxi ’s direction
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than its length. Therefore, it makes sense to regularize the length of wxi (i = 1, . . . , n). This
can be achieved by adding a regularizer ‖t‖2 + ∑

i ‖wxi ‖2 to (14). Define f = (t�,w�)�,
the optimization function turns out to be:

f�S f + γ

(

‖t‖2 +
∑

i

‖wxi ‖2
)

= f�S f + γ ‖ f ‖2 = f�(S + γ I ) f , (15)

where γ > 0 is a trade-off parameter. In fact, the extra term γ ‖ f ‖2 often refers to as the
Tikhonov regularizer, which is commonly used with a small γ to keep matrices from being
singular. However, the value of γ is crucial for our method, because it also controls the
influence of w’s length on the projection t .

With simple algebraic formulation, the objective function (12) becomes
∑

i j

Wb
i j

(
t�xi − t�x j

)2

= 2t�X (Db − Wb)X� t = 2t�XLbX� t

=
(

t
w

)� (
2XLbX� 0

0 0

) (
t
w

)

=
(

t
w

)�
Sb

(
t
w

)

, (16)

where Lb = Db − Wb is the Laplacian matrix, and Db is a diagonal matrix with the i-th
diagonal element being Db

ii = ∑
j �=i W

b
i j .

Finally, by integrating (15) and (16), the objective function of TSD can be written as
follows:

f ∗ = argmax
f

f�Sb f

f�(S + γ I ) f
. (17)

The optimization of (17) can be achieved by solving a generalized eigenvalue problem:

Sb f = λ(S + γ I ) f (18)

whose solution can be easily given by the eigenvector with respect to the largest eigenvalue.
In order to obtain a one-dimensional embedding of an example x, we just use the first part of
f ∗ = (t∗�,w∗�)� and compute b = t∗�x. Suppose that we want to project d-dimensional
data into an r -dimensional subspace. Let f 1, . . . , f r be the solutions of (17) corresponding
to the r largest eigenvalues λ1 > . . . > λr . Then the r -dimensional embedding b of x is
computed as follows:

b = T�x, T = (t1, . . . , tr ).

Algorithm 1 gives the pseudo-code for TSD. It is worth noting that although w∗ seems
not to be used in computing the low-dimensional embeddings, as the parameter which is
simultaneously optimized with t∗, it exerts a crucial influence on the resultant transformation
matrix T . This is means that both t∗ and w∗ determine the final results of TSD.

The main computational cost of TSD lies in building tangent spaces for n data points
and solving the generalized eigenvalue problem (18). Our algorithm has a time complexity
of O((d2m + m2d) × n) for the construction of n tangent spaces and O(r2 × (d + mn))

for finding r eigenvectors with respect to the r largest eigenvalues. For comparison, we also
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Algorithm 1 TSD

Input: Labeled examples {{xi , yi }|xi ∈ R
d , yi ∈ {1, 2, . . . ,C}}ni=1;

Dimensionality of embedding space m (1 ≤ m ≤ d);
Trade-off parameters γ (γ > 0).

Output: d × r transformation matrix T .

Construct the within-class graph Gw and the between-class graph Gb;
Calculate the weight matrices Ww and Wb with (11) and (13);
for i = 1 to n do
Construct Txi by performing PCA on the intraclass neighborhood of xi ;

end for
Compute the eigenvectors f 1, f 2, . . . , f r of (18) with respect to the top r eigenvalues;
T = (t1, t2, . . . , tr ).

give the time complexities of some classical and related methods. The time complexity of
PCA is O(n2d) and that of LDA is also O(n2d) [16]. As we have discussed in Sect. 2,
MFA, LSDA, LFDA fall into the same framework with different graphs, which implies
that they have the same computational cost. Since LDA also falls into the graph Laplacian
based framework [15], their time complexities turn out to be O(n2d). The above analysis
suggests that TSD is more time consuming compared with other methods. However, since
local tangent spaces are estimated by local PCA, we can obtain at most k1 + 1 meaningful
orthonormal bases for each tangent space,1 where k1 is the size of within-class neighborhood.
This implies that the dimensionality m of the directional derivative wxi (i = 1, . . . , n) is
always less than k1 + 1. In practice, k1 is usually small to ensure the locality. This makes
sure that m is actually a small constant. To conclude, the overall time complexity of TSD is
O((d2m + m2d) × n + r2 × (d + mn)). Since m is usually small, TSD has an acceptable
computational cost.

3.3 Kernel TSD

TSD is a linear dimensionality reduction method. In this section, we propose Kernel TSD
which can be performed in a Reproducing Kernel Hilbert Space (RKHS) for non-linear
dimensionality reduction.

Consider a feature space F induced by a non-linear mapping φ : X → F , where X is
an input domain. We can construct an RKHS HK by defining a kernel function K(·, ·) using
the inner product operation 〈·, ·〉, such that K(x, y) = 〈φ(x), φ( y)〉. Given a data set {xi ∈
X }ni=1, we can define the data matrix in the feature space F as Φ = (φ(x1), . . . , φ(xn)).
Then one can use the orthogonal projection to decompose any projection vector t ∈ HK
into a sum of two functions: one lying in the span{φ(x1), . . . , φ(xn)}, and the other lying
in the orthogonal complementary space. Therefore, there exist a set of coefficients αi (i =
1, 2, . . . , n) satisfying

t =
n∑

i=1

αiφ(xi ) + v = Φα + v, (19)

where α = (α1, α2, . . . , αn)
� and 〈v, φ(xi )〉 = 0 for all i . Note that although we set

f = (t�,w�)� and optimize t and w together, we should estimate tangent spaces in F
through local Kernel PCA [10] rather than reparametrize w like t .

1 That’s because there are only k1 + 1 examples as the inputs of local PCA.
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Let T φ
xi be the matrix formed by the orthonormal bases of the tangent space attached

to φ(xi ). By replacing Txi with T φ
xi (i = 1, 2, . . . , n) and substituting (19) into (15), the

objective function (15) turns out to be:
(

t
w

)� (
XS1X� XS2
S2�X� S3

) (
t
w

)

+ γ

(
t
w

)� (
t
w

)

=
(

α

w

)� (
K S1K K S2
S�
2 K S3

) (
α

w

)

+ γ

(
α

w

)�(
K 0
0 Ī

)(
α

w

)

=
(

α

w

)� (
K S1K + γ K K S2

S�
2 K S3 + γ Ī

) (
α

w

)

=
(

α

w

)�
Sφ

(
α

w

)

,

where K is a kernel matrix with Ki j = K(xi , x j ) and Ī is an identity matrix sizedmn×mn.
Similarly, the objective function (16) becomes

(
t
w

)� (
2XLbX� 0

0 0

) (
t
w

)

=
(

α

w

)� (
2K LbK 0

0 0

) (
α

w

)

=
(

α

w

)�
Sφ
b

(
α

w

)

.

Note that due to 〈v, φ(xi )〉 = 0 for all i , every term of v vanishes from the above
formulations. Finally, Kernel TSD can be converted to a generalized eigenvalue problem as
follows:

Sφ
b ϕ = λSφϕ, (20)

where we have defined ϕ = (α�,w�)�.
Given the eigenvectors ϕ1, . . . ,ϕr with respect to the r largest eigenvalues of (20), the

resultant transformation matrix can be written as Γ = (α1, . . . ,αr ). Then, the embedding b
of an original example x is computed as:

b = Γ �Φ�φ(x) = Γ �(K(x1, x), . . . ,K(xn, x))�.

4 Discussion

For developing a good graph-based dimensionality reduction method, one of the most impor-
tant problems is how to construct a good graph so that the preferred data structure can be
preserved. As we have discussed in Sect. 2, many existing methods such as MFA, LSDA
and LFDA aim to design specific graphs to enhance the local compactness of the data in the
same class and separate the data points with different class labels. However, none of them
breaks the graph Laplacian based framework. Our method mainly focuses on developing a
new strategy to extract more information of the data manifold from a given graph. More
specifically, we use the first-order Taylor expansion to incorporate the structural informa-
tion from tangent spaces, i.e., the terms w�

x j
T�
x j

(xi − x j ))
2 (i, j = 1, . . . , n) in (10), into

the scatter matrix S. Moreover, it is worth noting that although we specify a certain weight
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matrix (11) to construct the within-class graph Gw, our method is flexible enough to utilize
the information from any valid graphs such as the one used in LFDA.

Local tangent space alignment (LTSA) [17] is a popular dimensionality reduction method
which also use the information from tangent spaces. The main idea of LTSA is to align every
local tangent space to construct global coordinates. Although both TSD and LTSA utilize
local tangent spaces, there are mainly two differences between them: (1) they actually solve
different problems in essence. TSD is a linear supervised dimensionality reduction method,
while LTSA is a non-linear unsupervised one. As a result, our method not only considers the
class labels tomake use of discriminant information, but can obtain an explicit transformation
matrix to compute the mappings for out-of-sample data. (2) TSD is a graph-based method
which can adopt any valid graph for training, whereas LTSA is not. This property provides
TSD with much more flexibility to handle various types of data for different applications.

Our method shares the same spirit with TSIMR [13], and both of them employ tangent
spaces to discover the geometrical structure of the data manifold. However, our approach
and TSIMR differ in two key aspects: (1) Like LTSA, TSIMR is a non-linear unsupervised
method, and thus has no ability to capture the discriminant information or give an explicit
transformation matrix. (2) They have totally different objective functions. It should be noted
that TSD employs (10) to construct the scatter matrix S, while the objective function of

TSIMR has other terms
∥
∥wxi − T�

xi Tx j wx j

∥
∥2
2

(i, j = 1, . . . , n). And we find these terms
are not much beneficial for discriminant analysis.

The effect of the Tikhonov regularizer γ ‖ f ‖2 = γ
(‖t‖2 + ∑

i ‖wxi ‖2
)
in (15) should

be highlighted, since it plays a key role in our method. Generally, Tikhonov regularization is
a common technique employed by many dimensionality reduction methods to deal with the
singularity problem of the matrix, where the parameter γ is always set to a very small value.
However, our method needs an appropriate large γ to penalize large ‖wxi ‖ (i = 1, . . . , n)

so that the within-class compactness can be enhanced.

5 Experiments

To evaluate the proposed method, related dimensionality reduction methods including PCA,
LDA, MFA, LSDA and LFDA are compared with TSD on multiple real-world data sets from
the UCI machine learning repository [1], the Protein Sequence data set2 from glycosylation
database Uniprot (v8.0), and the USPS data set. Specifically, we first perform dimensionality
reduction to map all examples into a subspace, and then carry out classification using the
nearest neighbor classifier (1-NN) in the subspace. This experimental setting is the same as
the one adopted in [12]. Moreover, we also compare the baseline method that just employs
the 1-NN classifier in the original space without performing dimensionality reduction.

Seven UCI data sets (Satellite, Theorem Prove, Breast Cancer, Column2C Image,
Ionosphere, Semeion Handwritten), the Protein Sequence data set, and the USPS data set
are used to conduct our experiments. Originally, the Theorem Prove and USPS data sets are
divided into a training set and a test set. For simplicity, we just use their test sets to carry on
the experiments. For the Protein Sequence data set, we use a subset of the Uniprot database
which contains only 99 mammalian protein entries. For each data set, we randomly split
certain rates of the data as the training set and the rest as the test set. Furthermore, all the
parameters for MFA, LSDA, LFDA and TSD are selected by three-fold cross-validation. The
configuration of each data set is shown in Table 1.

2 This protein sequence data set is available at http://www.ebi.ac.uk/uniprot.
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Table 1 List of the classification data sets used in our experiments

Data Set Dimensionality # of examples # of classes Rates of training (%)

Satellite 36 6435 2 10

Theorem prove 51 3059 2 10

Breast cancer 9 263 2 50

Column2C 6 310 2 50

Image 18 2086 2 10

Ionosphere 34 351 2 50

Protein sequence 420 2000 2 20

Semeion handwritten 256 1593 10 20

USPS 256 2007 10 20

Table 2 Mean values and standard deviations of the error rates (%) on the satellite, theorem prove, breast
cancer and column2C data sets

Methods Satellite Theorem prove Breast cancer Column2C

Baseline 13.31 ± 0.72 30.86 ± 1.66 24.73 ± 4.08 18.77 ± 2.70

PCA 12.97±0.62� 30.35 ± 1.51� 30.88±3.15� 18.10 ± 2.26�
LDA 17.56 ± 0.45 37.60 ± 1.10 35.80 ± 4.01 24.35 ± 3.70

MFA 14.34 ± 0.62 29.90±1.22� 31.15 ± 2.52 23.23 ± 3.69

LSDA 13.27 ± 0.48 31.79 ± 1.42 32.33 ± 2.70 22.26 ± 3.74

LFDA 13.13 ± 0.52� 30.19 ± 1.52� 31.15 ± 2.98� 17.84±2.52�
TSD 13.29 ± 0.90� 30.14 ± 1.55� 31.30 ± 3.03� 18.55 ± 2.74�

The best method is highlighted by bold font. The best and comparable ones based on the t-test with the
significance level 5 % are marked with ‘�’

The performance of PCA and graph-based dimensionality methods including MFA,
LSDA, LFDA and TSD depend on the dimensionality of the discovered embedding sub-
space. Thus we show the best results obtained by those methods. Every experimental result
is obtained from the average over 20 splits. We give the mean values and standard deviations
of the error rates (%) on the employed data sets, where the best method is highlighted in bold
font and the best and comparable ones based on the t-test with the significance level 5 % are
marked with ‘�’.

The experimental results on the satellite, theorem prove, breast cancer and column2C
data sets are shown in Table 2. In most cases, classification with dimensionality reduction is
statistically better than the baseline. However, LDA perform well on none of the four data
sets, probably because the implicit assumption adopted by LDAmismatches the distributions
of these data sets. On the other hand, all the graph-based methods get reasonable well results,
because they aim to preserve the local structure of data. PCA also works well for the purpose
of separating data from different classes. Although it does not attain the best performance,
our method achieves comparable good results.

Table 3 describes the classification performance of eachmethod on the Image, Ionosphere,
Protein Sequence, Semeion Handwritten and USPS data sets. Again, LDA gets worse results.
Surprisingly, the counterparts of TSD including MFA, LSDA, LFDA, fail to perform well
for the protein sequence and the Semeion handwritten data sets. In the case of Semeion
handwritten data set, these methods are even worse than the baseline. The characteristics of
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Table 3 Meanvalues and standard deviations of the error rates (%) on the image, ionosphere, protein sequence,
semeion handwritten and USPS data sets

Methods Image Ionosphere Protein sequence Semeion USPS

Baseline 9.25 ± 1.00 14.00 ± 1.98 33.17 ± 1.05 15.98 ± 1.16 12.07 ± 0.72

PCA 9.09 ± 1.00 10.77 ± 1.98 22.43 ± 0.83� 13.03 ± 1.09� 11.62 ± 0.64

LDA 25.99 ± 2.31 16.94 ± 2.86 38.97 ± 2.99 42.94 ± 2.15 20.26 ± 1.47

MFA 7.57 ± 1.03 10.66 ± 2.16 30.21 ± 3.20 44.95 ± 2.26 19.46 ± 1.23

LSDA 8.58 ± 1.44 10.71 ± 2.86 30.76 ± 2.24 65.36 ± 3.82 71.23 ± 1.81

LFDA 7.77 ± 0.98 13.94 ± 1.75 40.51 ± 6.91 45.27 ± 2.47 12.07 ± 1.57

TSD 6.73±0.95� 9.34±1.37 � 22.06±1.19� 12.78±1.04� 10.94±0.66�

The best method is highlighted by bold font. The best and comparable ones based on the t test with the
significance level 5 % are marked with ‘�’

the feature vectors in the two data sets probably explain why this happens. Every example
in the two data sets has a sparse and binary feature vector with high dimensionality in which
only a small number of elements are one, and the rest are zero. For instance, the Semeion
Handwritten data set contains 1593 binary images of handwritten digits consisting 16 × 16
pixels. In this case, the graph Laplacian based methods may not be able to capture the
meaningful local geometry of the data manifold any more. On the other hand, TSD achieves
the best results probably because it can capture extra geometrical information from tangent
spaces. This suggests that our proposed method makes good use of the information from
tangent spaces and thus can correctly discover the data structure. In addition, the limitation
inherited from the graph Laplacian based framework rather than the choice of graphs in
each graph-based method should be responsible for the undesirable results, since the adopted
graph in TSD is similar to those in MFA, LSDA and LFDA.Moreover, even when the feature
vectors are no longer sparse and binary, TSD can also get the lowest error rates comparedwith
the other methods with high level of statistical significance in the image and ionosphere data
sets. This demonstrates that due to utilizing the structural information from tangent spaces,
TSD can not only improve the performance of dimensionality reduction, but be applied to
the data sets on which the graph Laplacian based counterparts fail to perform effectively.

Table 4 gives the time consumptions of differentmethods.As can be seen, TSD is relatively
less efficient than its counterparts, because it has to estimate the tangent space and tangent

Table 4 Computation time (in seconds) of each method for dimensionality reduction

Methods PCA LDA MFA LSDA LFDA TSD

Satellite 0.0014 0.0021 0.1198 0.0971 0.0191 5.4878

Theorem prove 0.0015 0.0028 0.0457 0.0265 0.0098 3.8428

Breast cancer 0.0002 0.0005 0.0039 0.0043 0.0022 0.4427

Column2C 0.0002 0.0004 0.0051 0.0043 0.0024 0.5647

Image 0.0004 0.0006 0.0232 0.0080 0.0037 1.0081

Ionosphere 0.0006 0.0010 0.0080 0.0071 0.0035 1.0006

Protein sequence 0.1376 0.2093 0.2789 0.3219 0.2559 47.901

Semeion handwritten 0.0400 0.0470 0.1152 0.0931 0.0914 17.103

USPS 0.0571 0.0555 0.1131 0.0974 0.1123 24.704
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vector at each data point. In fact, this is also the weakness of other tangent space based
methods [8,13]. Therefore, proposing a strategy to make tangent space based methods more
scalable can be an interesting research direction.

6 Conclusion

In this paper, we have proposed a novel supervised dimensionality reduction method named
local tangent space discriminant analysis (TSD), which differs from the methods based
on the graph Laplacian framework. By introducing tangent spaces and using the first-order
Taylor expansion, we develop a new strategy to utilize the information from tangent spaces,
which leads to a natural way of preserving the geometrical structure of the data manifold.
The proposed method aims to seek an embedding space where the local manifold structure
of the data belonging to the same class is preserved as much as possible, while the marginal
data points with different class labels are better separated. Moreover, TSD has the analytic
solution by solving a generalized eigenvalue problem and can be easily extended to non-linear
dimensionality reduction through the kernel trick.

The effectiveness of the proposed method has been demonstrated by comparing with
related work on multiple real-world data sets including the UCI data sets and the protein
sequence data set. The experimental results show that TSDworks well on the data sets which
can hardly bewell handled by its counterparts, and attains better performance of classification
due to utilizing the extra information from tangent spaces. Future work directions include
extending our method to different learning scenarios such as semi-supervised learning and
developing the sparse algorithm of TSD for large-scale learning tasks.

Acknowledgments This work is supported by the National Natural Science Foundation of China under
Projects 61370175 and 61075005, and Shanghai Knowledge Service Platform Project (No.ZF1213).

Appendix 1: Detailed Derivation of S

In order to fix S, we decompose (10) into three additive terms as follows:

f�S f =
n∑

i, j=1

Ww
i j ((xi − x j )

� t)2

︸ ︷︷ ︸
term one

+

n∑

i, j=1

Ww
i j

(
w�

x j
T�
x j

(xi − x j )
)2

︸ ︷︷ ︸
term two

+

n∑

i, j=1

Ww
i j

[
−2((xi − x j )

� t)w�
x j
T�
x j

(xi − x j )
]

︸ ︷︷ ︸
term three

,

and then examine their separate contributions to the whole S.
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Term One
n∑

i, j=1

Ww
i j

(
(xi − x j )

� t
)2 = 2t�X (Dw − Ww)X� t = 2t�XLwX� t,

where Dw is a diagonal weight matrix with Dw
i i = ∑n

j=1 W
w
i j , and Lw = Dw − Ww is the

Laplacian matrix. Then we have S1 = 2(Dw − Ww) = 2Lw . And term one contributes to
XS1X� in (14).

Term Two Define Bji = T�
x j

(xi − x j ), then

n∑

i, j=1

Ww
i j

(
w�

x j
T�
x j

(xi − x j )
)2

=
n∑

i, j=1

Ww
i j

(
w�

x j
B ji

)2

=
n∑

i, j=1

Ww
i j w

�
x j
B ji B

�
j iwx j

=
n∑

j=1

w�
x j

(
n∑

i=1

Ww
i j B ji B

�
j i

)

wx j =
n∑

i=1

w�
xi Hiwxi ,

where we have defined matrices {Hj }nj=1 with Hj = ∑n
i=1 W

w
i j B ji B�

j i .
Now suppose we define a block diagonal matrix S3 sizedmn×mn with block sizem×m.

Set the (i, i)-th block (i = 1, . . . , n) of S3 to be Hi . Then the resultant S3 is the contribution
of term two for S in (14).

Term Three Define vectors {Fj }nj=1 with Fj = ∑n
i=1 W

w
i j B ji , then term three can be rewrit-

ten as:
n∑

i, j=1

Ww
i j

[
−2

(
(xi − x j )

� t
)

w�
x j
T�
x j

(xi − x j )
]

=
n∑

i, j=1

2Ww
i j

[(
(x j − xi )� t

)
w�

x j
B ji

]

=
n∑

i, j=1

Ww
i j

(
−t�xi B�

j iwx j

)
+

n∑

i=1

t�xi F�
i wxi +

n∑

i, j=1

Ww
i j

(
−w�

x j
B ji x�

i t
)

+
n∑

i=1

w�
xi Fi x

�
i t.

From this expression, we can give the formulation of S2. Then the S�
2 in (14), which is its

transpose, is ready to get.
Suppose we define two block matrices S12 and S22 sized n ×mn each where the block size

is 1×m, and S22 is a block diagonal matrix. Set the (i, j)-th block (i, j = 1, . . . , n) of S12 to
be −Ww

i j B
�
j i , and the (i, i)-th block (i = 1, . . . , n) of S22 to be F�

i . Then, term three can be

rewritten as: t�X (S12 + S22 )w + w�(S12 + S22 )
�X� t . It is clear that S2 = S12 + S22 .
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