
Supplementary Material for BPCCA
Detailed Row-wise Model Derivations for
Estimating θr
Based on the row-wise two-stage model (7), the condi-
tional distribution of X(v) given Y(v,r) is X(v)|Y(v,r) ∼
Ndc

v,d
r
v
(C(v)Y(v,r),Σ

(v)
c ,Ψ

(v)
r ). It can be rewritten in a

vector form: x(v,r)|y(v,r) ∼ N (Ĉ(v)y(v,r),Ψ
(v)
r ⊗ Σ

(v)
c ),

where x(v,r) = vec(X(v)), y(v,r) = vec(Y(v,r)), and
Ĉ(v) = I⊗C(v).

Vector-based combination for X(1) and X(2): Since
X(1) and X(2) are independent given Y(1,r) and Y(2,r), the
two-view observations X(1) and X(2) can be combined via
vector-based concatenation as follows:

xr|yr ∼ N (Ĉyr,Lr), (21)

where xr = [x(1,r)>,x(2,r)>]>, yr = [y(1,r)>,y(2,r)>]>,
Ĉ = blkdiag(Ĉ(1), Ĉ(2)), and Lr = blkdiag(Ψ(1)

r ⊗
Σ

(1)
c ,Ψ

(2)
r ⊗Σ

(2)
c ).

Matrix-based combination for Y(1,r) and Y(2,r):
Based on (7), the two-view intermediate matrices Y(1,r) and
Y(2,r) can be naturally combined via matrix-based concate-
nation as follows:

Yr|Z ∼ Ndr
1+dr

2,q
c(RZ>,Σr, I), (22)

where Yr = [Y(1,r),Y(2,r)]>, R = [R(1)>,R(2)>]>, and
Σr = blkdiag(Σ(1)

r ,Σ
(2)
r ). Then, we can derive other dis-

tributions involved in Yr and yr as follows:

Yr ∼ Ndr
1+dr

2,q
c(0,Ψr, I), (23)

yr ∼ N (0,Ψr ⊗ I), (24)

Z|Yr ∼ Nqc,qr (Y
r>Σ−1r RMr, I,Mr), (25)

yr|xr ∼ N (ΠrĈ
>L−1r xr,Πr), (26)

where Ψr = RR> + Σr, Mr = (R>Σ−1r R + I)−1, and
Πr = (Ψ−1r ⊗ I + Ĉ>L−1r Ĉ)−1.

Row-wise parameter estimation: If the intermedi-
ate matrices {Yr

n}Nn=1 are observed, θr can be solved
via the EM algorithm by maximizing Lr(θr) =∑N

n=1 ln p(Y
r
n,Zn|θr) =

∑N
n=1 ln p(Y

r
n|Zn,θr)p(Zn).

Therefore, we can obtain the statistics of {Yc
n}Nn=1 via

their maximum posteriori estimations according to p(yc|xc)
(13), and turn to maximize the expectation of Lc(θc)
w.r.t. p(yc|xc) instead of the complicated log-likelihood
L(θc,θr) for close-form solutions.

In the E step, we take the expectation of Lr(θr) w.r.t.
p(Z,Yr|xr) = p(Z|Yr)p(yr|xr) and obtain

Qr(θr) = −
1

2

N∑
n=1

{
qc ln |Σr|+ tr(〈Σ−1r (Yr

nYr
n
>

+RZ>n ZnR> −Yr
nZnR> −RZ>n Yr

n
>)〉r)

}
,

(27)

where terms of p(Zn) have been omitted as a constant, and
〈·〉r denotes the expectation E[E[·|Yr]|xr] w.r.t. p(Z|Yr)

Table 3: Average rank-one matching accuracy on the PIE
data set (Best; Second best).

Pose 22.5◦ vs. 0◦ −22.5◦ vs. 0◦ −22.5◦ vs. 22.5◦

CCA 91.55 ± 3.55 90.38 ± 5.36 72.09 ± 8.39
2DCCA 90.85 ± 5.70 85.36 ± 5.71 54.92 ± 7.83

MCCA1+2 88.51 ± 7.23 88.81 ± 6.07 70.16 ± 10.79
PCCA 92.98 ± 4.06 90.82 ± 5.24 74.13 ± 7.14
BMTF 90.11 ± 4.09 88.57 ± 5.02 68.45 ± 10.87

BPCCA 94.38 ± 3.81 92.92 ± 3.73 79.67 ± 8.26
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Figure 2: Log-likelihood of BPCCA over iterations on the
PIE, CUHK, and AR data sets.

and p(yr|xr) correspondingly. According to (26), the re-
quired expectation is given by

E[Yr
nYr

n
>|xr

n] = trqc(E[yr
ny

r
n
>|xr

n]), (28)

where E[yr
ny

r
n
>|xr

n] = Πr +ΠrĈ
>L−1r xr

nx
r
n
>L−>r ĈΠr

is a (dr1 + dr2)q
c × (dr1 + dr2)q

c block matrix with qc × qc
submatrices.

In the M step, we maximize Qr(θr) (27) w.r.t. θr, which
leads to the following solutions:

R̃ =

[
N∑

n=1

〈Yr
nZn〉r

][
N∑

n=1

〈Zn
>Zn〉r

]−1
, (29)

Σ̃(v)
r =

1

Nqc

N∑
n=1

〈H(v,r)
n H(v,r)

n

>
〉r. (30)

where 〈Yr
nZn〉r = E[Yr

nYr
n
>|xr

n]Σ
−1
r RMr, 〈ZnZ>n 〉r =

MrR
>Σ−1r 〈Yr

nZ>n 〉r + qcMr, and H
(v,r)
n = Y

(v,r)
n −

R(v)Z>n .

More Experimental Results
Table 3 shows the average rank-one matching accuracy on
the PIE data set for poses 22.5◦ vs. 0◦, −22.5◦ vs. 0◦, and
−22.5◦ vs. 22.5◦. Table 4 shows the photo-sketch recog-
nition performance on the CUFS data set in the sketch vs.
photo settings. As can be seen, the trend and behavior of
these results are consistent with those shown in the paper.

Convergence Study
We show the log-likelihood of p(X(1),X(2)) over iterations
for BPCCA (with the regularization parameter γ = 0) on
the PIE (22.5◦ vs. −22.5◦), CUHK (photo vs. sketch), and
AR (photo vs. sketch) data sets in Figure 2. From the figure,
BPCCA does improve the log-likelihood on the whole, al-
though slight drop happens during iterations for the CUHK
and AR data sets. The possible cause is that BPCCA does



Table 4: Average rank-one matching accuracy on the CUFS data set (Best; Second best).
Matching Type Sketch vs. Photo Cropped Sketch vs. Original Photo with T = 50
Training Setting T = 25 T = 50 T = 75 m = 2 m = 4 m = 6 m = 8

C
U

H
K

CCA 40.31 ± 2.13 64.06 ± 4.40 81.50 ± 2.78 72.61 ± 4.39 71.16 ± 3.77 59.06 ± 3.73 30.58 ± 3.15
2DCCA 74.05 ± 16.73 85.07 ± 17.87 92.65 ± 4.17 58.48 ± 16.34 38.77 ± 10.81 17.97 ± 2.87 7.61 ± 3.42

MCCA1+2 53.50 ± 5.28 70.80 ± 7.26 81.42 ± 6.00 73.48 ± 5.45 69.20 ± 4.21 49.71 ± 2.96 29.42 ± 3.67
PCCA 57.42 ± 3.45 80.65 ± 3.17 90.27 ± 2.80 80.43 ± 2.84 78.04 ± 3.90 66.09 ± 3.33 38.70 ± 4.17
BMTF 95.95 ± 1.16 97.90 ± 0.63 98.50 ± 0.84 77.39 ± 4.71 70.29 ± 6.81 55.36 ± 6.32 31.88 ± 5.17

BPCCA 98.47 ± 0.43 99.13 ± 0.46 99.03 ± 0.50 98.99 ± 0.37 99.20 ± 0.53 98.62 ± 1.10 93.62 ± 8.40

A
R

CCA 17.35 ± 3.33 29.04 ± 5.16 48.54 ± 5.38 27.53 ± 3.73 27.12 ± 4.65 21.51 ± 7.13 13.97 ± 4.46
2DCCA 16.43 ± 5.06 22.19 ± 3.86 32.08 ± 10.68 20.68 ± 3.84 16.58 ± 3.50 11.51 ± 4.88 4.66 ± 1.73

MCCA1+2 22.14 ± 5.27 35.89 ± 3.34 51.67 ± 4.59 33.42 ± 6.10 30.55 ± 3.60 22.88 ± 4.83 14.93 ± 2.77
PCCA 21.22 ± 4.73 35.89 ± 6.95 54.58 ± 5.54 32.74 ± 5.22 32.33 ± 4.44 25.21 ± 5.67 17.81 ± 2.81
BMTF 28.67 ± 4.50 38.08 ± 4.82 55.21 ± 7.62 16.30 ± 5.34 15.34 ± 3.47 12.33 ± 2.89 8.63 ± 1.45

BPCCA 40.31 ± 4.77 51.64 ± 4.70 68.54 ± 5.68 48.36 ± 3.71 42.88 ± 6.56 27.40 ± 5.17 16.16 ± 4.82

not have the monotonicity property of EM, since it maxi-
mizes the expectations of Lc(θc) and Lr(θr) alternatively
instead of the complete-data log-likelihood L(θc,θr) =

Lc(θc) +
∑N

n=1 p(x
c
n|yc

n) = Lr(θr) +
∑N

n=1 p(x
r
n|yr

n).
Further investigations are needed for a deeper understand-
ing. Nevertheless, empirically BPCCA is stable and often
converges within a relatively small number of iterations.
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