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1 DETAILED DERIVATION OF S
By representing S as a block matrix, the within-class
objective function becomes:

min
t,v
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t

v

)

= f⊤Sf . (1)

In order to fix S, we decompose (1) into four additive
terms as follows:
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,

and examine their separate contributions to the whole
Sp.

Term One

n∑

i,j=1

Wij((xi − xj)
⊤t)2

=2t⊤X(D − W )X⊤t = 2t⊤XLX⊤t,

where D is a diagonal weight matrix with Dii =
∑n

j=1
Wij , and L = D−W is the Laplacian matrix. Thus

term one contributes to S1 in (1).
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Term Two

Define Bπji = T⊤
πj

(xi − xj). Then
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Let Πp = {i|πi = p, i ∈ {1, . . . , n}} be a set that consists
of the indices of the data belonging to the p-th linear
subspace. Then we can group the terms with respect to
vπj

(j = 1, . . . , n) into P terms as follows:
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=
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Hj)vp,

where we have defined matrices {Hj}
n
j=1

with Hj =
∑n

i=1
WijBπjiB

⊤
πji.

Now we can define a block diagonal matrix SH
3

sized
mP × mP , where the block size is m × m. Set the (i, i)-
th block (i = 1, . . . , P ) of SH

3
to be

∑

j∈Πp
Hj . Then the

resultant SH
3 is the contribution of term two for S3 in

(1).

Term Three

Define vectors {Fp}
P
p=1 with Fp =

∑n

i=1

∑

j∈Πp
WijBπjix

⊤
i . Then term three can be
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rewritten as:
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From this expression, we can give the formulation of S2.
Then the block matrix S⊤

2 in (1), which is its transpose,
is ready to get.

Suppose we define two block matrices S1

2
and S2

2
sized

d × mP each where the block size is d × m, and S2
2 is a

block diagonal matrix. Set the p-th block (p = 1, . . . , P )
of S1

2
to be

∑n

i=1

∑

j∈Πp
−WijxiB

⊤
πji, and the (p, p)-th
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clear that S2 = S1
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2 .

Term Four

Denote matrix Tπi
T⊤

πj
by Aπiπj

. Then, with γ omitted
temporarily,
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Similarly, we can sum up the terms with respect to vπj
,

which further leads to:
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where in the third line we have defined matrices {Cj}
n
j=1

with Cj =
∑n

i=1
WijA

⊤
πiπj
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.

Now suppose we define two block matrices S1

3 and
S2

3
sized mP × mP each where the block size is m× m,

TABLE 1
Average error rates (dimensionality) on the USPS data

sets.

Methods USPS-eo USPS-sl

Baseline 2.72%(256) 3.25%(256)
PCA 2.47%(37.9) 2.93%(38.75)
LDA 10.93%(9) 21.25%(9)
MFA 2.79%(26.3) 3.57%(29.45)
LSDA 3.39%(26.8) 4.21%(27.1)
LFDA 7.89%(39.25) 9.84%(20.9)
LLTSA 8.16%(28.4) 8.47%(29.85)
LSDR - -
LPFE 4.33%(184.4) 3.61%(180.25)
PMPDA 1.76%(28.65) 2.20%(31.6)

MPDA 1.67%(35.25) 2.28%(30.2)

and S1
3 is a block diagonal matrix. Set the (p, p)-th

block (p = 1, . . . , P ) of S1

3
to be

∑

j∈Πp
(DjjI + Cj),

and the (p, q)-th block (p, q = 1, . . . , P ) of S2

3
to be

∑

i∈Πp

∑

j∈Πq
2WijAπiπj

. Then the contribution of term

four for S3 would be γ(S1
3 − S2

3). Further considering
the contribution of term two for S3, we finally have
S3 = SH

3
+ γ(S1

3
− S2

3
).

2 USPS DATA SET

In this section, we further evaluate the effectiveness of
MPDA by conducting experiments on the data sets that
have been tested by the authors of its counterparts. In
this case, results from the existing algorithms can be
cited from the corresponding original paper for fairer
comparisons. According to Table 2 in our paper, LFDA
seems to be the best algorithm except for MPDR and
PMPDR. Because of this, we focus on comparing MPDA
with LFDA. Specifically, our experiments are conducted
on two binary classification data sets created from the
USPS handwritten digit data set. The first task (USPS-eo)
is to separate even numbers from odd numbers, and the
second task (USPS-sl) is to separate small numbers (“0”
to “4”) from large numbers (“5” to “9”). We randomly
chose 100 data points from each digit to form both the
training and test set, so that there are 1000 data points for
training and testing, respectively. The strategy of model
selection is the same as that in our paper. We report the
best classification results obtained by each method and
the corresponding dimensionality at which the results
are achieved. Every experimental result is obtained from
the average over 20 times, where the best method and
the comparable one based on Student’s t-test with a p-
value of 0.05 are highlighted in bold font. The above
experimental configuration is identical to the one used
in LFDAs original paper [1] except for two differences.
The first is that the neighborhood size k is treated as a
parameter for graph construction. We determine k via 4-
fold cross validation, while k is set to be 7 in LFDA’s
original paper [1]. The second is that we search all
the possible dimensionalities of embedding subspaces to
report the best classification results, whereas the results
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Swiss roll

(a) Swiss roll (b) Sampled data

(c) TSIMR (27.64s) (d) MP-TSIMR (9.82s)

(e) LTSIMR (27.92s) (f) MP-LTSIMR (10.02s)

Fig. 1. The “Swiss roll” manifold and the corresponding
embedding results (time) obtained by the dimensionality
reduction methods with and without partitioning the man-
ifold.

in [1] are obtained by selecting the dimensionality of em-
bedding subspaces via 20-fold cross validation. This two
differences imply that we are expected to get relatively
better results than those reported in [1]. Table 1 shows
that MPDA and PMPAD still outperform its counterparts
with statistical significance. LSDR is not tested since the
execution time is too long. It is worth noting that the
reported classification results of LFDA in [1] are 9.0%
for UPSP-eo and 12.9% for UPSP-sl, respectively. In our
experiments, these results are improved as expected.
However, they are still much worse than the results of
MPDA and PMPDA.

3 EFFECTIVENESS OF PARTITIONING THE
MANIFOLD

As a crucial part of MPDA, the manifold partition strat-
egy plays a key role in preserving the manifold structure
with computational and storage efficiency. In fact, it can
also be adopted by other tangent space base methods [2],
[3] to make them more efficient. To verify its effective-
ness, we apply the manifold partition strategy to Tangent
Space Intrinsic Manifold Regularization (TSIMR) [3] and
its linear variation (we call it LTSIMR). This further leads
to two algorithms called MP-TSIMR and MP-LTSIMR,
which can be viewed as the approximated versions of
TSIMR and LTSIMR. To show the effectiveness of the
manifold partition strategy, we compare the embedding
results of these methods on the “Swiss roll” manifold.

The “Swiss roll” is a two-dimensional manifold in
a three-dimensional ambient space as shown in Fig-
ure 1(a). The data set consists of 2000 points sampled
from the manifold, which are depicted in Figure 1(b).
The construction of the adjacency graph uses 10 nearest
neighbors with the heat kernel. The parameter t of
the heat kernel is fixed as the average of the squared
distances between all points and their most nearest

neighbors. The parameter γ is set to be γ = 0 for TSIMR
and MP-TSIMR, and γ = 109 for LTSIMR and MP-
LTSIMR. We fix the parameters k′ = 31 and M = 48
for the manifold partitioning algorithm.

Figure 1 shows the two-dimensional embedding re-
sults obtained by different algorithms. As can be seen in
Figure 1(c), TSIMR precisely reflects the intrinsic man-
ifold structure. In addtion, Figure 1(d) shows that MP-
TSIMR also gets a good embedding result besides a little
distortion. In the case of linear dimensionality reduction,
LTSIMR and MP-LTSIMR almost get identical results
as shown in Figures 1(e) and 1(f). These embedding
results demonstrate that MP-TSIMR and MP-LTSIMR
have similar or the same embedding performance com-
pared with TSIMR and LTSIMR. When it comes to the
computational time, MP-TSIMR and MP-LTSIMR are
three times faster than their counterparts. This is because
both TSIMR and LTSIMR estimate 2000 tangent vectors
and tangent spaces to discover the intrinsic manifold
structure, whereas MP-TSIMR and MP-LTSIMR only
need to estimate 65 tangent vectors and tangent spaces.
Therefore, it is clear that the manifold partition strategy
not only is useful for MPDA, but can accelerate other
tangent space based methods without sacrificing their
performances much.

4 STORAGE OVERHEADS

Apart from high computational costs, many tangent
based methods such as TSIMR [3] and PFE [2] are also
storage consuming, which greatly hampers their appli-
cations. In contrast, the proposed MPDA algorithm is
free from this limitation. In this section, we evaluate the
storage overheads of MPDA compared with its tangent
space based counterparts including PMPDA and LPFE
on the COIL20, COIL100, Face Detection, MNIST, Opt-
Digits, Semeion Handwritten and Vehicle data sets. The
number of the training data for each data set is the same
with the setting used in our paper. In order to obtain
consistent results, the neighborhood size for constructing
the within-class graph G is set to be k = 7, because the
storage costs of PMPDA and LPFE directly depend on
k. Figure 2 shows the peak memory costs of PMPDA,
LPFE and MPDA on different data sets. As can be seen,
MPDA has the least storage overheads in all cases (about
150 times and 60 times less than PMPDA and LPFE,
respectively). In Figures 2(b) and 2(e), the peak memory
costs of PMPDA and LPFE are extremely high as the
number of data becomes relatively large, whereas MPDA
still has very low memory costs. It should be noted that
the above results are obtained under the condition of
k = 7. In practice, k may be larger, say k = 10 or k = 15.
In this case, the storage overheads of PMPDA and
LPFE grow quickly as k becomes large. Consequently,
LPFE can barely work normally, and PMPDA is no
longer applicable because of out of memory. In contrast,
MPDA still costs the same amount of memory because
its storage overheads are independent of k. Therefore,
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Fig. 2. Peak memory costs (Mb) of PMPDA, LPFE and MPDA on different data sets.

(a) PCA (b) LDA (c) MFA

(d) LSDA (e) LFDA (f) MPDA

Fig. 3. Two-dimensional embedding results of the COIL20 dataset (better viewed in color).

the proposed MPDA algorithm is more scalable and
practical than its counterparts.

5 2D EMBEDDING RESULTS

MPDA aims to find an embedding space where the
manifold structure with respect to each class is preserved
as much as possible, while nearby data from different
classes are well separated. To verify whether this goal
is achieved, we test the two-dimensional embedding
results obtained by MPDA on the COIL20 and Face De-
tection image data sets. The data embeddings belonging
to different classes are represented by different colors,
and thumbnails of some images are also shown. In order
to represent the data embeddings clearly, we only show
the data from 10 out of 20 classes in the COIL20 data
set. The embedding results obtained by other methods

including PCA, LDA, MFA, LSDA and LFDA are also
provided.

In Figure 3, all the methods except LSDA obtain
reasonable results for the COIL20 data set. LDA, MFA
and LFDA get similar embedding results because they
essentially fall into the same framework [4]. Compared
with other methods, the embeddings obtained by MPDA
are quite different but still reasonable in gathering the
data in the same class as well as separating those
from different classes. As can be seen in Figure 4, the
embeddings of each class obtained by PCA seriously
overlap each other, because it has no ability to utilize the
discriminant information from class labels. In addition,
LDA also gets bad embedding results, because the Face
Detection is a binary classification data set so that LDA
can only map the data into a one-dimensional space. On
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(a) PCA (b) LDA (c) MFA

(d) LSDA (e) LFDA (f) MPDA

Fig. 4. Two-dimensional embedding results of the Face Detection dataset (better viewed in color).

the other side, MFA, LSDA, LFDA and MPDA obtain
reasonable results because they share the same spirit of
gathering the data in the same class and separating those
in different classes. It is worth noting that since Figures 3
and 4 only reflect the embedding performance of MPDA,
we cannot draw any conclusion that whether or not the
classification performance of MPDA is superior to other
methods just from these figures..
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