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1 DERIVATIONS OF THE LOG-LIKELIHOOD FUNCTION

The detailed derivations of the log-likelihood function, i.e., expression (6) in our paper, are as follows: The p.d.f. of the
matrix-variate distribution p(X) = N7, , (X|E, X1, 2>) is given by
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With the above results, the conditional distribution p(X,,(,)|Zm) = NI" 1(n ) (Xm(n)|U(")diag(z)U(” ) olp,, ol;),
i.e., expression (5) in our paper, can be written as follows:
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where U™ € RI™ *P is the mode-n complement factor matrix with U™ = UM o ... o UM+ o UV o . o
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sizes of the identity matrices I, € R"*/» and I, € RIC I for clarity.
From (2), the logarithm of p(X,,(n)|zm) is given by

and ¥y = ol -, into (1). Here, we have used the subscript to explicitly indicate the
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In addition, p(z,,) = N(zm|0,1) = (27)"2 P exp{—3z,,2m}, and its logarithm is given by Inp(z,,) = —1{PIn2r +
z,) Zm }. Therefore, the expectation of the log-likelihood function, i.e., expression (6) in our paper, can be derived as follows:
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2 DERIVATIONS OF THE UPDATE OF U™

Given the parameter set @ = {U() U™ ) 42}, the log-likelihood function (4) can be rewritten by grouping the terms
related to U™ together and omitting other terms as a constant, which leads to
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Then, we can take the partial derivative with respect to U(™) and solve
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It is clear that the solution of

is given by
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which leads to expression (11) in our paper.

3 DERIVATIONS OF THE UPDATE OF ¢
Similarly, we can rewrite the log-likelihood function (4) by only considering the terms related to o, which leads to
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We then take the partial derivative with respect to o2 and solve
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where the solution of (M(Z) =0,ie. UM (updated U(), has been used to compute (||X,,, (n) — Udiag(zn, U 12).
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The above solution of o2 can be further simplified by substituting (7) into (10). From (5), we have
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which leads to expression (12) in our paper. It is worth noting that the second equality of (11) holds because of the following
fact:
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4 DERIVATIONS OF THE UPDATE OF U™ wiITH L, REGULARIZATION
Recall that the Lo-regularized log-likelihood function is

N
£2(0) = £(0) — 7 Y t(UMU™ ), (13)
where £(6) is given by (4). By only considering the terms related to U™, £2(0) becomes
: n- T n n T
£h2(0) = Z Xy — U diag(z,,) U™ ) |[F) —yte(UUM ), (14)

With the similar derivations in (6), we take the partial derivative of £*2(8) with respect to U™ and solve
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Since o2 is considered as a constant during the update of U™, without loss of generality, the scale 20 can be absorbed into

the regularization parameter -y, and finally we have
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which leads to expression (14) in our paper.

5 DERIVATIONS OF THE UPDATE OF U™ wiTH MOMENT-BASED CONCURRENT REGULARIZATION
m)

Recall that moment-based CR aims to improve the conditioning of (z,,z,,) as follows:
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Replacing the original second-order moment (z,,z,,) by (z,,z, MR in (7), we have
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where we have defined A) =T® (U™ ) U™ )). This eventually leads to expression (17) in our paper.

6 DERIVATIONS OF THE JOINT DISTRIBUTION FOR PROTA wITH BAYESIAN CR
PROTA with Bayesian CR has the following joint distribution:
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The logarithm of p(D, ©) is given by:
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With the above formulation, we can perform variational inference by substituting (21) into the optimized form of the
variational distributions as follows:

Ing;(®;)  (Inp(D,O))e\e,- (22)

7 EXPECTATIONS FOR THE VARIATIONAL UPDATES

The expectations involved in updating the variational distributions ¢(z,,), ¢(U™), and ¢(7), i.e., equations (24), (25), and
(26) in our paper, respectively, can be computed as follows:
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where we define ®@_, (UM UMY = (UM UM @ . @ (UO UMY, and @, (UW U®) = (UM UM g
® (U(”“)TU("“)> ® (U("_l)TU("_l)) ®...® (U(l)TU(1)>. Finally, the expectation of the model fitting error can be
computed by
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